3K star!LLM读不懂?那用可视化的方式来学吧

现在人工智能太流行了,每天都在听大模型,但是你知道它是如何运作,如何从输入的文本中学习到语言的规律和知识的吗?

今天我们分享的开源项目,让你通过可视化的方式来了解大模型,更直观的搞懂它到底是怎么回事,它就是:llm-viz

llm-viz 是什么

该项目展示了 GPT 式网络工作实现的 3D 模型。即 OpenAI 的 GPT-2、GPT-3(可能还有 GPT-4)中使用的网络拓扑。

项目是由新西兰小伙Brendan Bycroft开发的,同时它提供了一个非常方便的在线环境可以直接查看,bbycroft.net/llm

在这里的第一个示例里展示了nano-gpt模型的执行原理,演示它对字母 A、B 和 C 的小列表进行排序的过程。llm-viz 还支持可视化任意大小的模型,并且适用于较小的 gpt2 大小,因为更大的模型(比如GPT-3)需要处理和存储非常多的数据,所以这个项目没有包含这些大模型的全部数据。

llm-viz 说明

llm-viz使用界面的左侧是模型结构总览图,包括模型的整体架构以及构成模型的各个组件。

如上图所示,nano-GPT 采用了 Transformer 架构。虽然 Transformer 是一种 Encoder-Decoder 架构,但 GPT 仅使用了 Decoder 部分。在 Decoder 中,每个 Token 的输出只能参考当前输入 Token 之前的 Token,因此 Decoder 通常用于文本生成,通过自回归方式预测下一个单词。

相对地,有些模型只使用 Encoder,Bert 就是一个典型的例子。在 Encoder 中,每个 Token 的输出参考了所有的输入 Token,因此 Encoder 更适合用于文本理解。

此外,还有一些模型同时使用 Encoder 和 Decoder,这是一种典型的 seq2seq 架构。Encoder 捕获源序列的内部表示,Decoder 将这些表示解码成目标序列。典型的应用包括语言翻译和语音识别等。

选择模型整体或某个组件时,你可以在右侧执行更像明细的查看,可以放大和点击其中任意的部分,来查看对应的详细信息。

由上图可知,LLM的工作流程包括:将文本划分成Token,根据字典将Token转换成字典索引(IDs),然后通过Word2Vec或者自定义的Embedding将IDs转换成embedding(向量);接着将向量输入到Transformer编码器中进行处理。

当选择模型整体或者某个组件时,右侧播放各个组件处理数据的动画。

安装运行

如果你想在本地运行本项目,你首先需要克隆项目到你的电脑上,之后执行以下步骤

 

bash

代码解读

复制代码

#安装依赖 yarn #启动dev server yarn dev

总结

项目提供了一个让零基础初学者更好地了解大语言模型工作原理和内部机制的方法,通过llm-viz 提供的可视化工具来直观地展示大模型的结构和运作。这样的工具对于教学、研究和理解模型内部机制非常有帮助。

项目信息

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

### 使用 Plotly 实现 LLM 可视化 #### 选择合适的可视化类型 对于展示 LLM 的性能和特性,可以选择不同的图表类型来更好地理解模型的行为。常见的可视化方式包括折线图、散点图、热力图以及交互式的三维图形。 - **训练损失曲线**:通过绘制每次迭代后的损失值变化情况可以帮助了解模型收敛速度及是否存在过拟合现象。 ```python import plotly.graph_objects as go epochs = list(range(1, 101)) loss_values = [random.uniform(0.5, 2.0) * math.exp(-epoch/50) for epoch in epochs] fig = go.Figure(data=go.Scatter(x=epochs, y=loss_values, mode='lines', name='Training Loss')) fig.update_layout(title="Training Loss Over Epochs", xaxis_title="Epoch", yaxis_title="Loss Value") fig.show() ``` - **注意力机制分布**:如果要显示自注意层内部节点之间的关系,则可以考虑使用热力图表示不同token间的重要性程度。 ```python attention_matrix = np.random.rand(8, 8) fig = go.Figure(data=go.Heatmap(z=attention_matrix, colorscale='Viridis')) fig.update_layout(title="Attention Weights Heatmap", xaxis_title="Token Index", yaxis_title="Token Index") fig.show() ``` - **预测结果对比**:当比较多个版本的LLM在同一测试集上的表现时,箱形图能够清晰地反映出各组数据间的差异性。 ```python model_versions = ['Version A', 'Version B', 'Version C'] accuracy_scores = [ [np.random.normal(loc=90, scale=5, size=30)], [np.random.normal(loc=92, scale=4, size=30)], [np.random.normal(loc=87, scale=6, size=30)] ] fig = go.Figure() for idx, version in enumerate(model_versions): fig.add_trace(go.Box(y=accuracy_scores[idx][0], name=version)) fig.update_layout(title="Model Accuracy Comparison Across Versions", yaxis_title="Accuracy Score (%)") fig.show() ``` 这些例子展示了如何利用Plotly创建直观且互动性强的数据可视化效果[^3]。除了上述提到的方法外,还可以探索更多适合特定应用场景下的其他形式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值