Unsloth官方发布本地微调大模型指南

对 LLM(大模型)进行微调可以定制其行为、增强并注入知识,并优化其在特定领域或任务上的表现。例如:

  • GPT-4作为基础模型,然而,OpenAI 对其进行了微调,使其能够更好地理解指令和提示,最终打造出了如今大家使用的  ChatGPT-4。

  • DeepSeek-R1-Distill-Llama-8B是 Llama-3.1-8B 的微调版本。DeepSeek 利用 DeepSeek-R1 生成的数据对 Llama-3.1-8B 进行了微调。这一过程被称为蒸馏(distillation),即将数据注入 Llama 模型,使其学习推理能力。

使用 Unsloth,我们可以在 Colab、Kaggle 或本地(仅需 3GB 显存)免费进行微调。通过在专业数据集上微调预训练模型(如 Llama-3.1-8B),你可以:

  • 更新知识:引入新的领域知识。

  • 定制行为:调整模型的语气、个性或回复风格。

  • 优化任务:提高特定任务的准确性和相关性。

微调的典型应用场景

✅ 训练 LLM 预测某个新闻标题对公司是正面还是负面影响。
✅ 利用历史客户交互数据,提供更准确且个性化的回复。
✅ 在法律文本上微调 LLM,用于合同分析、判例研究和合规性审查。

你可以将微调后的模型理解为一个专门针对某些任务优化的特定 Agent,能够更高效地完成特定任务。微调可以复现 RAG 的所有能力,但 RAG 不能完全替代微调

选择合适的模型和微调方法  

如果你是初学者,建议从 Llama 3.1(8B)这样的小型指令模型(Instruct Model)入手,并在此基础上进行实验。此外,你需要在 QLoRA 和 LoRA 训练方法之间做出选择:

  • LoRA:微调 小型可训练矩阵(16-bit),无需更新所有模型权重。

  • QLoRA:结合 LoRA + 4-bit 量化,能够以最小的资源处理超大规模模型。

你可以在 Hugging Face 上选择自己喜欢的模型,并匹配相应的模型名称,例如:unsloth/llama-3.1-8b-bnb-4bit

此外,还有 3 个可调节的关键参数:

✅ max_seq_length = 2048 —— 控制上下文长度。虽然 Llama-3 支持 8192,但推荐使用 2048 进行测试。Unsloth 支持 4× 更长的上下文微调。

✅ dtype = None —— 默认为 None,对于较新的 GPU,建议使用 torch.float16 或 torch.bfloat16

✅ load_in_4bit = True —— 启用 4-bit 量化,可在 16GB GPU 上减少 4 倍显存占用,在大显存 GPU(如 H100) 上关闭此选项可略微提升 1%~2% 的准确率

推荐使用 QLoRA,它是目前最易用且高效的微调方法之一Unsloth 的动态 4-bit 量化使 QLoRA 相比 LoRA 造成的精度损失已基本恢复

除了微调,你还可以使用 Unsloth 进行:
🚀 推理(GRPO)
👀 视觉任务
🏆 奖励建模(DPO、ORPO、KTO)
📚 持续预训练
📝 文本补全
 

以及其他训练方法!


 

数据集  

对于 LLM,数据集是可以用来训练模型的数据集合。为了能够用于训练,文本数据需要以可以 tokenize 的格式呈现。

通常,你需要创建一个包含两列的数据集 —— 问题答案。数据的质量和数量将直接影响微调后的效果,因此确保这一部分正确至关重要。

你可以使用 ChatGPT 或本地 LLM 来合成生成数据并将数据集结构化(转换为问答对)。

微调可以永久性地融入已有文档库,并不断扩展其知识库,但仅仅将数据堆积起来并不会获得最佳效果。为了获得最佳结果,建议精心策划一个结构良好的数据集,理想情况下是问答对。这种方式有助于提高模型的学习、理解和回答准确性。

但并非总是如此。例如,如果你仅仅将所有代码数据直接用于微调,即使没有结构化的格式,模型的性能也可能会有显著提升。所以,这实际上取决于你的应用场景。

理解模型参数  

模型有数百万种超参数组合,选择合适的参数值对于获得良好的结果至关重要。你可以编辑下面的参数(数值),但其实可以忽略它们,因为我们已经选择了相当合理的参数值。

图片

目标是调整这些参数,以提高准确性,同时避免过拟合。

过拟合是指语言模型记住了某个数据集的内容,却无法回答新的问题。我们希望最终的模型能够回答未见过的问题,而不是简单地进行记忆。以下是关键参数:

学习率(Learning Rate)

定义了模型在每个训练步骤中权重调整的幅度。

  • 较高的学习率:训练速度更快,但有过拟合的风险。

  • 较低的学习率:训练更稳定,但可能需要更多的训练轮次(epochs)。

  • 典型范围:1e-4(0.0001)到 5e-5(0.00005)。

训练轮次(Epochs)

模型看到完整训练数据集的次数。

推荐:1-3轮(超过 3 轮通常不是最优的,除非你希望模型减少幻觉回答,但也会减少创造力)。

  • 更多的训练轮次:有助于更好的学习,但也更容易过拟合。

  • 较少的训练轮次:可能导致模型欠拟合。


避免过拟合和欠拟合

过拟合(过于专业化)模型记住了训练数据,无法推广到未见过的输入。解决方案:
  • 降低学习率。

  • 减少训练轮次。

  • 将数据集与通用数据集结合,例如 ShareGPT

  • 增加 dropout 比例,引入正则化。

欠拟合(过于通用)虽然这种情况比较少见,但有时模型可能无法从训练数据中学习,给出的回答与基础模型类似。解决方案:
  • 增加学习率。

  • 训练更多轮次。

  • 使用更符合领域的相关数据集。

微调没有单一的“最佳”方法,只有最佳实践。实验是找到适合你需求的方法的关键。

训练与评估  

一切设置好后,就可以开始训练了!如果遇到问题,记住你可以随时调整超参数、数据集等内容。

在训练过程中,你会看到一些数字的日志!这些是训练损失(training loss),你的任务是调整参数,使其尽可能接近 0.5。如果你的微调没有达到 1、0.8 或 0.5,可能需要调整一些参数。如果损失降到 0,这通常也不是一个好兆头!

图片

我们通常建议保持默认设置,除非你需要更长的训练时间或更大的批量大小。

  • per_device_train_batch_size = 2 :增加此值可以更好地利用GPU,但要注意可能会因为填充而导致训练速度变慢。相反,可以增加 gradient_accumulation_steps 以获得更平滑的训练过程。

  • gradient_accumulation_steps = 4 :模拟更大的批量大小,而不增加内存使用。

  • max_steps = 60 :加速训练。对于完整的训练,可以用 num_train_epochs = 1 来替代(建议 1-3 轮,以避免过拟合)。

  • learning_rate = 2e-4 :选择较低的学习率可以实现较慢但更精确的微调。可以尝试像 1e-45e-5 或 2e-5 这样的值。

评估

为了进行评估,你可以通过与模型聊天的方式进行手动评估,看看它是否符合你的需求。你也可以启用 Unsloth 的评估功能,但要记住,根据数据集的大小,这可能会比较耗时。为了加快评估速度,你可以:

  • 减少评估数据集的大小,或

  • 设置 evaluation_steps = 100

对于测试,你也可以取 20% 的训练数据用于测试。如果你已经使用了所有的训练数据,那么就需要手动进行评估。你也可以使用像 EleutherAI 的 lm-evaluation-harness 这样的自动评估工具。需要注意的是,自动化工具可能无法完全符合你的评估标准。

https://docs.unsloth.ai/get-started/fine-tuning-guide

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值