1.前言
1.1 基础模型研究
2023 年,随着 LLM 技术的发展,中国模型研究机构的开源模型迎来了爆发式的增长:
2023 年 3 月,智谱 AI 首先在魔搭社区发布了 ChatGLM-6B 系列,ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。现在,智谱 AI 的 ChatGLM-6B 已经更新到第三代,同时在多模态推出了 CogVLM 系列,以及支持视觉 agent 的 CogVLM,在代码领域推出了 CodeGeex 系列模型,同时在 agent 和 math 均有探索和开源的模型和技术。
2023 年 6 月,百川首先在魔搭社区发布了百川 - 7B 模型,baichuan-7B 是由百川智能开发的一个开源的大规模预训练模型。基于 Transformer 结构,在大约 1.2 万亿 tokens 上训练的 70 亿参数模型,支持中英双语,上下文窗口长度为 4096。百川也是较早推出预训练模型的公司,并戏称给开发者提供更好的 “毛坯房”,让开发者更好的 “装修”,推动了国内基于预训练 base 模型的发展。后续百川发布了 13B 模型,以及百川 2 系列模型,同步开源 base 和 chat 两个版本。
2023 年 7 月,上海人工智能实验室在 WAIC 2023 开幕式和科学前沿全体会议上,联合多家机构发布全新升级的 “书生通用大模型体系”,包括书生 · 多模态、书生 · 浦语和书生 · 天际等三大基础模型,以及首个面向大模型研发与应用的全链条开源体系。上海人工智能实验室不仅做了模型 weights 的开源,还在模型、数据、工具和评测等层面进行全方位开源,推动技术创新与产业进步。后续上海人工智能实验室陆续发布了书生 · 浦语 20B 模型,以及书生 · 灵笔多模态模型。
2023 年 8 月,阿里巴巴开源了通义千问 7B 模型,后续相继开源了 1.8B,14B,72B 的 base 和 chat 模型,并提供了对应的 int4 和 int8 的量化版本,在多模态场景,千问也开源了 qwen-vl 和 qwen-audio 两种视觉和语音的多模态模型,做到了 “全尺寸、全模态” 开源,Qwen-72B 提升了开源大模型的尺寸和性能,自发布以来一直维持在各大榜单榜首,填补了国内空白。基于 Qwen-72B,大中型企业可开发商业应用,高校、科研院所可开展 AI for Science 等科研工作。
2023 年 10 月,昆仑万维发布百亿级大语言模型「天工」Skywork-13B 系列,并罕见地配套开源了 600GB、150B Tokens 的超大高质量开源中文数据集 Skypile/Chinese-Web-Text-150B 数据集。由昆仑经过精心过滤的数据处理流程从中文网页中筛选出的高质量数据。大小约为 600GB,总 token 数量约为(1500 亿),是目前最大得开源中文数据集之一。
2023 年 11 月,01-AI 公司发布了 Yi 系列模型,其参数规模介于 60 亿至 340 亿之间,训练数据量达到了 300 亿 token。这些模型在公开排行榜(如 Open LLM leaderboard)以及一些极具挑战性的基准测试(例如 Skill-Mix)中的表现,均超过了之前的模型。
1.2 模型定制新范式
性能卓越的模型和行业定制模型通常需要在预训练模型上,通过数据进过多次微调得来的。过去的一年中,来自社区的贡献者通过模型微调的方式,持续在各个方向做探索,并回馈社区,贡献了更加繁荣的行业模型生态。
IDEA Lab 发布的姜子牙通用大模型是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力。
OpenBuddy 致力于面向全球用户提供强大的多语言聊天模型,强调对话式 AI 对英语、中文和其他语言的无缝多语言支持。
Codefuse 和 wisdomshell 专注于代码领域,希望提升开发者效率,让代码使用更加简单,在各类评测中,效果远超基准。
FinGLM 和通义金融模型,专注在金融领域,基于 GLM 模型和千问模型,提供了金融年报解读,金融名词解释等金融行业垂直能力。
浙江大学,东北大学,大连理工,华东理工大学,南方科技大学,北京大学袁粒项目组,香港中文大学 openmmlab 等高校实验室通过微调预训练模型,推动开源模型在司法行业,教育行业,医疗行业,视频领域,全模态等方向发展。
- LLM 类型介绍
2.1 Base 模型和 Chat 模型
我们通常会看到某模型研发机构开源了 base 模型和 chat 模型,那 base 模型和 chat 模型有什么区别呢?
首先,所有的大语言模型(LLM)的工作方式都是接收一些文本,然后预测最有可能出现在其后面的文本。
base 模型,也就是基础模型,是在海量不同文本上训练出来的预测后续文本的模型。后续文本未必是对指令和对话的响应。
chat 模型,也就是对话模型,是在 base 基础上通过对话记录(指令 - 响应)继续做微调和强化学习,让它接受指令和用户对话时,续写出来的是遵循指令的,人类预期的 assistant 的响应内容。
2.2 多模态模型
多模态 LLM 将文本和其他模态的信息结合起来,比如图像、视频、音频和其他感官数据,多模态 LLM 接受了多种类型的数据训练,有助于 transformer 找到不同模态之间的关系,完成一些新的 LLM 不能完成的任务,比如图片描述,音乐解读,视频理解等。
图片来源:ONELLM
2.3 Agent 模型
LLM 具备 agent 大脑的能力,与若干关键组件协作,包括,
规划(planning):子目标拆解,纠错,反思和完善。
记忆(Memory):短期记忆(上下文,长窗口),长期记忆(通过搜索或者向量引擎实现)
工具使用(tool use):模型学习调用外部 API 获取额外的能力。
2.4 Code 模型
Code 模型在模型的预训练和 SFT 中加入了更多的代码数据占比,在代码的一系列任务,比如代码补齐,代码纠错,以及零样本完成编程任务指令。同时,根据不同的代码语言,也会有 python,java 等更多的专业语言代码模型。
3.使用 LLM 及优化 LLM 输出效果
大语言模型是根据跨学科的海量的文本数据训练而成的,这也让大语言模型被大家认为最接近 “AGI” 的人工智能。然而,针对大语言模型,我们希望更好的使用 LLM,让 LLM 更好的遵循我们的指令,按照我们可控的方式和特定行业的知识输出答案。
3.1 模型推理
模型推理指利用训练好的模型进行运算,利用输入的新数据来一次性获得正确结论的过程。
参照图,流程如下:
分词器将提示拆分为标记列表。根据模型的词汇表,某些单词可能会被拆分为多个标记。每个令牌都由一个唯一的数字表示。
每个数字标记都会转换为 embedding 向量。embedding 向量是固定大小的向量,以 LLM 更有效处理的方式表示标记。所有 embedding 一起形成 embedding 矩阵。
嵌入矩阵用作 Transformer 的输入。Transformer 是一个神经网络,是 LLM 的核心。Transformer 由多层 layer 组成。每层都采用输入矩阵并使用模型参数对其执行各种数学运算,最值得注意的是 self-attention 机制。该层的输出用作下一层的输入。
最终的神经网络将 Transformer 的输出转换为 logits。每个可能的下一个标记都有一个相应的 logit,它表示该标记是句子 “正确” 延续的概率。
使用多种采样技术之一从 logits 列表中选择下一个标记。
所选 token 作为输出返回。要继续生成 token,请将所选令牌附加到步骤 (1) 中的令牌列表,然后重复该过程。这可以继续下去,直到生成所需数量的 token,或者 LLM 发出特殊的流结束 (EOS) 令牌。
3.2 Prompt(提示词)
prompt(提示词)是我们和 LLM 互动最常用的方式,我们提供给 LLM 的 Prompt 作为模型的输入,比如 “使用李白的口吻,写一首描述杭州的冬天的诗”,开源大模型引入了 system 消息和人工 prompt 的概念,可以根据提示提供更多的控制。
如何系统的去学习大模型LLM ?
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
AI大模型系统学习路线图
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
辅助学习书籍PDF资源:
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
请根据您的个人进度和时间安排,适当调整学习计划。记得在学习过程中,理论与实践相结合,不断进行项目实践和反思,以加深理解和技能的掌握。
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓