【LLM大模型】GraphRAG手调Prompt提取自定义实体

GraphRAG在使用Prompt-Tune根据领域自动生成的实体总是不理想怎么办?这个时候就需要手动调整啦,当然我们还需要借助ChatGPT类的助手帮助我们生成一些Example。

1. 手调Prompt

最后说到:

虽然我们通过Prompt-Tune借助LLM的能力自动微调Prompt以适配输入文件的领域,但我发现Prompt-Tune的给出实体列表就跟抽卡似的,同一个领域每次都不同。

  • person, organization, technology, dataset, method
  • model, person, publication, technology, optimization strategy
  • model, technique, metric, architecture, dataset

当使用以下命令微调提示词Promt时候,它只生成了三个文件:community_report.txt、entity_extraction.txt和summarize_descriptions.txt。

bash
 代码解读
python -m graphrag.prompt_tune --root . --domain "scholarly papers about retrieval augmented generation" --method random --limit 2 --chunk-size 500 --output prompt-paper

其中summarize_descriptions.txt和community_report.txt都是根据领域,在设定角色的时候设定它是XX领域内的专家等信息,所以他们和实体提取关系不大,也无需调整。所以重点看一下entity_extraction.txt,它的结构如下,翻译为中文方便阅读:

python
 代码解读
-任务目标-
给定一个可能与此活动相关的文本文档和一个实体类型列表,从文本中识别出这些类型的所有实体以及这些实体之间的所有关系。

-步骤-
1.识别所有实体。对于每个识别出的实体,提取以下信息:
	•	entity_name: 实体名称,首字母大写
	•	entity_type: 以下类型之一:[author, publication date, methodology, technology, evaluation method, research direction]
	•	entity_description: 实体属性和活动的全面描述
格式化每个实体为 (“entity”{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>){record_delimiter}

2.从步骤1中识别出的实体中,识别出所有明显相关的 (source_entity, target_entity) 对。
对于每对相关的实体,提取以下信息:
	•	source_entity: 在步骤1中识别出的源实体名称
	•	target_entity: 在步骤1中识别出的目标实体名称
	•	relationship_description: 解释为什么认为源实体和目标实体彼此相关
	•	relationship_strength: 表示源实体和目标实体之间关系强度的整数评分,范围为1到10

格式化每个关系为 (“relationship”{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>{tuple_delimiter}<relationship_description>{tuple_delimiter}<relationship_strength>){record_delimiter}

	3.	使用 {record_delimiter} 作为列表分隔符。
	4.	返回输出文本的主要语言为“英语”。作为步骤1和2中识别出的所有实体和关系的单个列表。如果需要翻译,只需翻译描述部分,其余部分保持不变。
	5.	当完成时,输出 {completion_delimiter}

示例
######################

示例1:
entity_types: [author, publication date, methodology, technology, evaluation method, research direction]
text:
Title: A Survey on Retrieval-Augmented Text Generation for Large Language Models
Authors: Yizheng Huang, Jimmy Huang
Published: 2024-04-17
Abstract: Retrieval-Augmented Generation (RAG) merges retrieval methods with deep
learning advancements to address the static limitations of large language
models (LLMs) by enabling the dynamic integration of up-to-date external
information. This methodology, focusing primarily on the text domain, provides
a cost-effective solution to the generation of plausible but incorrect
responses by LLMs, thereby enhancing the accuracy and reliability of their
outputs through the use of real-world data. As RAG grows in complexity and
incorporates multiple concepts that can influence its performance, this paper
organizes the RAG paradigm into four categories: pre-retrieval, retrieval,
post-retrieval, and generation, offering a detailed perspective from the
retrieval viewpoint. It outlines RAG's evolution and discusses the field's
progression through the analysis of significant studies. Additionally, the
paper introduces evaluation methods for RAG, addressing the challenges faced
and proposing future research directions. By offering an organized framework
and categorization, the study aims to consolidate existing research on RAG,
clarify its technological underpinnings, and highlight its potential to broaden
the adaptability and applications of LLMs.
PDF Link: http://arxiv.org/pdf/2404.10981v1
ouput:
#############################
-实际数据-
######################
entity_types: [author, publication date, methodology, technology, evaluation method, research direction]
text: {input_text}
######################
output:

解决任务的方法 任务的输入和输出 任务的Example,3到5个左右。 任务的历史纪录,如果有的话 用户输入的问题。

只是这个任务输出要求非常高,要求输出的格式还是有点小复杂的,这也是为何很多小模型可能在实体提取阶段就失败的原因之一。所以如何手调呢?首先你需要知道你的输入文章都有哪些实体,对于论文我们咨询一下ChatGPT看看。

在这里插入图片描述

根据GPT生成的实体,我们修改entity_extraction.txt中任务说明部分、Example中的entity_types和Real Data部分的entity_types。既然需要提取的实体类别已经更新,接下来就是更新few shot的Example输出了。拷贝Prompt开头到Example的output,然后粘贴至ChatGPT中,他会根据Prompt中的指令继续扩写后续的output。

在这里插入图片描述

然而GPT-4o-mini输出的结果完全不对,你就知道这Prompt写的有多拉胯了,或者说GPT-4o-mini也有点拉胯了。复制到DeepSeeker,重新输出example,这就完全一致了。不知道是不是DeepSeeker本身训练代码出身的,我感觉它的输出格式很稳定。

vbnet
 代码解读
("entity"{tuple_delimiter}A Survey on Retrieval-Augmented Text Generation for Large Language Models{tuple_delimiter}title{tuple_delimiter}The title of the paper discussing Retrieval-Augmented Generation for large language models){record_delimiter}
("entity"{tuple_delimiter}Yizheng Huang, Jimmy Huang{tuple_delimiter}authors{tuple_delimiter}The authors of the paper on Retrieval-Augmented Generation){record_delimiter}
("entity"{tuple_delimiter}2024-04-17{tuple_delimiter}published date{tuple_delimiter}The date the paper on Retrieval-Augmented Generation was published){record_delimiter}
...
("relationship"{tuple_delimiter}A Survey on Retrieval-Augmented Text Generation for Large Language Models{tuple_delimiter}http://arxiv.org/pdf/2404.10981v1{tuple_delimiter}The title of the paper is linked to its PDF version{tuple_delimiter}10){record_delimiter}
{completion_delimiter}

当你使用其他的在线对话应用时,一定要注意输出的每条entity应是以(){record_delimiter}这样的格式化输出,否则你会遇到无法构建知识图谱网络的问题。我们拷贝上述输出的Example并粘贴到我们的entity_extraction.txt中,重新开始小批量Index测试。

2. 索引与可视化

bash
 代码解读
poetry run poe index --root .

可视化

在这里插入图片描述

3. 查询

  • 问题1 这些论文的主要提出了哪些方法优化RAG?
bash
 代码解读
 poetry run poe query --method global "这些论文的主要提出了哪些方法优化RAG"

SUCCESS: Global Search Response: ### 优化RAG的主要方法 这些论文主要提出了多种方法来优化Retrieval-Augmented Generation (RAG),以下是详细的总结:

  1. 集成RAG与MOE 论文提出了一种新颖的架构,该架构将Retrieval-Augmented Generation (RAG) 与Mixture of Experts (MOE) 集成在一起,以增强大型语言模型(LLMs)的角色基础安全性和北约清关级别 [Data: Reports (20, 23, 25, 26, 27 +more)].
  2. 解析和向量化半结构化数据 论文介绍了一种新颖的方法,用于解析和向量化半结构化数据,从而增强了RAG在大型语言模型中的功能 [Data: Reports (10, 13, 16, 17 +more)].
  3. RAG的阶段分类 论文将RAG范式分为四个不同的阶段:预检索、检索、后检索和生成,提供了一种结构化的方法来实施RAG [Data: Reports (41)].
  4. RAG的评估方法 论文引入了特定的评估方法,这对于评估检索增强生成过程的有效性至关重要 [Data: Reports (42)].
  5. 解决RAG的挑战 论文识别并解决了RAG中的挑战,为未来研究改进该方法奠定了基础 [Data: Reports (43)]. 这些方法共同为RAG的优化和实施提供了全面的框架和工具。
  • 问题2 最新的RAG研究综述
arduino
 代码解读
poetry run poe query --method local "最新的RAG研究综述"

SUCCESS: Local Search Response: ### 最新关于RAG的调查 最近,关于检索增强生成(Retrieval-Augmented Generation, RAG)的调查引起了计算语言学界的广泛关注。与传统的生成模型相比,RAG在许多自然语言处理(NLP)任务中显示出显著的优势,并取得了最先进的性能。以下是关于RAG的最新调查的详细信息。 调查概述 调查论文《A Survey on Retrieval-Augmented Text Generation for Large Language Models》由Yizheng Huang和Jimmy Huang撰写,于2024年4月17日发表。该论文详细探讨了RAG如何结合检索方法与深度学习进展,以解决大型语言模型(LLMs)的静态限制问题,通过动态整合最新的外部信息来增强模型的准确性和可靠性。 RAG的四个分类 论文将RAG范式分为四个主要类别:预检索、检索、后检索和生成。这种分类从检索的角度提供了对RAG性能影响因素的详细视角,并讨论了该领域的进展。 未来研究方向 此外,该论文还介绍了RAG的评估方法,并提出了未来的研究方向,旨在通过提供一个有组织的框架和分类,来整合现有的RAG研究,阐明其技术基础,并突出其扩大LLMs适应性和应用的潜力。 这些信息提供了关于RAG的最新调查的全面概述,展示了其在NLP领域中的重要性和未来的发展潜力。 以上信息参考了以下数据记录:

  • 实体(Entities):36, 38, 41
  • 关系(Relationships):35
  • 来源(Sources):4 希望这些信息能帮助您更好地理解最新的RAG调查。

给出了最新综述的标题、发表时间、作者以及一个简单的介绍。并给出该论文的关键见解,将RAG分为四种主要范式:检索前、检索、检索后和生成,讨论RAG的发展和分析重要的研究,同时也介绍了各种评估RAG的方法。最后给出了关于该论文的链接地址。其实输入的5个文档中,还有一份综述是2022年,显然相较于最新,它自动选择了2024年。若是能将这些实体的ID做成链接自动作为hint查询显示,就厉害了。

4. 总结

本篇通过介绍如何手调Prompt来生成更符合自己设定的实体,并讨论了可能会出现的问题如何修复等,最后介绍优化后的实体提取Prompt,在索引RAG相关论文、可视化和检索方面的测试。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 17
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值