RAG下的prompt编写探索

针对特定领域的回答,编写抽象的prompt需要在细节和灵活性之间找到平衡。我们需要一个既能涵盖普遍步骤又能适应不同问题的框架。以下是如何在这种情况下编写抽象prompt的方法,以及适用于各种技术领域的通用策略。

一、编写抽象Prompt的通用策略

  1. 定义用户问题和背景信息

    • 明确用户输入({user_input})和背景信息({retrieved_docs})的角色。
    • 背景信息可以包括一组相关的知识点、数据或文档片段。
  2. 结构化回答的指令

    • 提供一个高层次的回答框架,指导生成模型如何组织回答。
    • 指示如何整合背景信息以形成连贯的答案。
  3. 保持回答的逻辑性和严谨性

    • 要求生成模型保持逻辑的连贯性和技术内容的严谨性。
    • 避免过于模糊或不确定的表述。
  4. 灵活适应不同问题

    • prompt应该足够通用,以适应不同但相关的技术问题。
    • 保持开放性,使生成模型能够在多种上下文中应用相同的结构。

示例:抽象Prompt的编写方法

范例 1:针对编程技术问题

用户输入
“如何优化Python代码的性能?”

检索到的背景信息

  1. “使用内置的数据结构(如列表、集合和字典)可以显著提高性能。”
  2. “避免在循环内重复计算,尽可能将常量或不变的计算移出循环。”
  3. “利用Python的并行处理库,如multiprocessingconcurrent.futures,可以提高CPU密集型任务的性能。”

抽象Prompt示例

用户问题:{user_input}

相关背景信息:
1. {retrieved_docs[0]}
2. {retrieved_docs[1]}
3. {retrieved_docs[2]}

请按照以下指令生成回答:

1. 从整体上总结用户问题涉及的主要领域或概念。
2. 利用提供的背景信息,详细描述一系列步骤或方法来解决或回答用户的问题。
3. 解释每个方法或步骤的重要性,如何应用以及在什么情况下最有效。
4. 最后,提供关于如何进一步优化或改进的建议。

请生成对以下问题的回答:
“{user_input}”

最终Prompt

用户问题:如何优化Python代码的性能?

相关背景信息:
1. 使用内置的数据结构(如列表、集合和字典)可以显著提高性能。
2. 避免在循环内重复计算,尽可能将常量或不变的计算移出循环。
3. 利用Python的并行处理库,如`multiprocessing`或`concurrent.futures`,可以提高CPU密集型任务的性能。

请按照以下指令生成回答:

1. 从整体上总结用户问题涉及的主要领域或概念。
2. 利用提供的背景信息,详细描述一系列步骤或方法来解决或回答用户的问题。
3. 解释每个方法或步骤的重要性,如何应用以及在什么情况下最有效。
4. 最后,提供关于如何进一步优化或改进的建议。

请生成对以下问题的回答:
“如何优化Python代码的性能?”

在这个示例中,prompt提供了一个通用的结构,指导生成模型如何总结和整合背景信息来回答用户问题。即使背景信息和用户问题的具体内容不同,这个框架仍然适用。<

  • 40
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据提供的引用内容,可以得知prompt+RAG的流程如下: 1. 首先,使用Retriever部分在知识库中检索出top-k个匹配的文档zi。 2. 然后,将query和k个文档拼接起来作为QA的prompt,送入seq2seq模型。 3. seq2seq模型生成回复y。 4. 如果需要进行Re-rank,可以使用LLM来rerank,给LLMprompt即可。 下面是一个简单的示例代码,演示如何使用prompt+RAG: ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration # 初始化tokenizer、retriever和seq2seq模型 tokenizer = RagTokenizer.from_pretrained('facebook/rag-token-base') retriever = RagRetriever.from_pretrained('facebook/rag-token-base', index_name='exact', use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained('facebook/rag-token-base') # 设置query和context query = "What is the capital of France?" context = "France is a country located in Western Europe. Paris, the capital city of France, is known for its romantic ambiance and iconic landmarks such as the Eiffel Tower." # 使用Retriever部分检索top-k个匹配的文档 retrieved_docs = retriever(query) # 将query和k个文档拼接起来作为QA的prompt input_dict = tokenizer.prepare_seq2seq_batch(query, retrieved_docs[:2], return_tensors='pt') generated = model.generate(input_ids=input_dict['input_ids'], attention_mask=input_dict['attention_mask']) # 输出生成的回复 generated_text = tokenizer.batch_decode(generated, skip_special_tokens=True)[0] print(generated_text) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值