在CPU上运行100B模型只需4MB内存!微软BitNet掀了英伟达的桌子!

在AI大模型领域,微软再次以惊人之势打破常规:BitNet,一个专为1位LLM(Large Language Model)设计的推理框架,正以前所未有的极简精度和超高性能,颠覆你对算力与资源的所有认知。它采用三值量化(-1、0、+1),将模型大小瘦身至原来的1/16,CPU上可获得2.37×–6.17×的加速,同时节能高达82.2%。不仅如此,BitNet甚至可以在普通笔记本CPU上实现100B参数级模型的本地推理,让“随身携带顶级AI”不再只是科幻!

图片

BitNet是什么?

BitNet是微软开源的1位LLM推理框架,通过将权重量化为仅有三种可能值(-1、0、+1),即1.58位精度,极大地压缩了模型体积,同时保持了与全精度模型相当的性能水平。

架构亮点

  • BitLinear层:专门设计的线性层,适配1.58位权重;

  • RoPE位置嵌入:保留Transformer高效的序列编码能力citeturn1search0;

  • ReLU²激活:更稳定的非线性变换,助力精度损失最小化;

  • SubLN规范化:简化层归一化,剔除冗余偏置。

性能爆炸:CPU逆袭GPU

极速推理

  • 在x86架构CPU上,BitNet可实现2.37到6.17倍的推理加速;

  • 在ARM架构CPU上,加速幅度达1.37倍到5.07倍。

极致能效

  • x86 CPU能耗降低71.9%–82.2%,ARM CPU能耗削减55.4%–70.0%,用更少电力输出更强算力;

  • 2B参数模型仅需约400MB内存,与常规FP16模型的2GB相比,节省了80%以上资源。

本地化大模型:100B参数不再是梦

BitNet实现了在单核CPU上运行100B参数模型,每秒处理5–7个token,与人类阅读速度相当,让大模型脱离数据中心束缚,轻松部署在笔记本和嵌入式设备上。

最新动态速递

  • 2025年4月14日:BitNet官方2B参数模型已在Hugging Face发布,立即可用;

  • 2025年2月18日:发表新论文《Bitnet.cpp: Efficient Edge Inference for Ternary LLMs》,引入TL与I2_S两大核心技术,实现6.25倍超高加速,并开源代码;

  • 2024年11月8日:发布BitNet a4.8,4位激活量化方案进一步提升推理速度和模型兼容性。

安装与入门指南

环境要求

  • Python ≥3.9CMake ≥3.22Clang ≥18

  • 推荐使用conda管理虚拟环境,轻松一键安装依赖。

图片

图片

https://github.com/microsoft/BitNet

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

### 回答1: ATC100B电容是一种陶瓷介质多层片式电容器。它具有体积小、重量轻、耐振动、抗高温等特点,被广泛应用于各种电子设备中。 ATC100B电容的ADS模型是一种用于仿真和设计电子电路的模型。ADS模型提供了ATC100B电容在电路中的行为特性,例如电容值、频率响应和损耗等。通过利用ADS模型,设计师可以更好地理解和分析电容器在电路中的影响,并根据需要进行优化和调整。 ADS模型还可以用于快速评估和验证设计方案,以及进行电路性能分析。在电子器件设计过程中,ADS模型能够提供准确的仿真结果,帮助设计师节省时间和成本。 总之,ATC100B电容的ADS模型是一种有助于电子电路设计和分析的工具。它能够提供电容器的行为特性,并帮助设计师更好地评估和优化电路性能。 ### 回答2: ATC100B电容是一种多层陶瓷电容器,在电子电路中用于存储和传输电荷,具有高频带宽、低损耗、高稳定性等特点。ADS模型是一种电路仿真软件,用于设计、分析和优化电路。 ATC100B电容的ADS模型基于该电容的特性参数,通过数学模型将其电性能转化为电路模型,以方便在ADS软件中进行电路仿真。ADS模型包含了电容的参数和连接方式,可以帮助工程师在电路设计过程中更准确地预测和优化电路性能。 ATC100B电容的ADS模型可以用于各类电路仿真,如滤波器、放大器、振荡器等。通过在ADS软件中建立电路模型并进行仿真,可以评估电容在电路中的性能表现,包括功耗、频率响应、噪声等。 在使用ATC100B电容的ADS模型时,需要准确设置电容的参数,包括电容值、电压容限、频率特性等。通过调整这些参数,可以验证电容在不同工作条件下的性能,并根据需要进行优化。 总之,ATC100B电容的ADS模型是一种方便而实用的电路仿真工具,可以帮助工程师更好地设计和优化电路。它提供了一种便捷而准确的方法,使得电路设计过程更加高效和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值