2024年最全15 本你必须阅读的 PyTorch 书籍(1)

编程-PyTorch-for-Deep-Learning

2.Python深度学习

我向绝对初学者推荐这本书。然而这本书需要基本的 Python 编程知识,尽管你在机器学习、线性代数和微积分方面的任何经验都将有助于更深入地理解这些材料。

立即建立您自己的神经网络。通过易于理解的说明和示例,您将学习深度学习的基础知识,并使用 TensorFlow、Keras、PyTorch 和 Theano 在 Python 中构建您自己的神经网络。虽然您可以选择在大而枯燥的教科书上花费数千美元,但我们建议您以一小部分成本获得相同的信息。

Python-深度学习

3.使用 PyTorch 进行深度学习

每隔一天,我们就会听到有关充分利用深度学习的新方法:改进的医学成像、准确的信用卡欺诈检测、远程天气预报等等。PyTorch 将这些超能力交给您,提供舒适的 Python 体验,让您快速入门,然后随着您和您的深度学习技能变得更加复杂而与您一起成长。

Deep Learning with PyTorch 教你如何使用 Python 和 PyTorch 实现深度学习算法。本书将带您进入一个引人入胜的案例研究:构建一种能够使用 CT 扫描检测恶性肺肿瘤的算法。当作者引导您完成这个真实示例时,您会发现 PyTorch 是多么有效和有趣。

使用 PyTorch 进行深度学习

4.使用 PyTorch 进行自然语言处理

如果对Python有兴趣,想了解更多的Python以及AIoT知识,解决测试问题,以及入门指导,帮你解决学习Python中遇到的困惑,我们这里有技术高手。如果你正在找工作或者刚刚学校出来,又或者已经工作但是经常觉得难点很多,觉得自己Python方面学的不够精想要继续学习的,想转行怕学不会的, 都可以加入我们,可领取最新Python大厂面试资料和Python爬虫、人工智能、学习资料!微信公众号【Python大本营】等你来玩奥~

使用深度学习第一版构建智能语言应用程序

这本书从头开始教授 NLP 基础知识以及用 python/pytorch 编码的强大设计模式。它通过从一个简单的示例开始并继续使用其他更高级的示例来无缝地教授它,这些示例一遍又一遍地使用相同的设计模式。对我来说,这是学习和记忆的最佳方式。它为我提供了一个基础,让我了解如何使用适当的 Python 面向对象实践以有组织的方式坐下来编写自己的解决方案。

本书旨在将自然语言处理 (NLP) 和深度学习的新手带到涵盖这两个领域的重要主题的品鉴会上。这两个学科领域都呈指数级增长。由于它同时介绍了深度学习和 NLP,并强调了实现,因此本书占据了重要的中间地带。在写这本书的时候,我们不得不做出艰难的,有时甚至是不舒服的选择,选择哪些材料要省略。对于初学者来说,我们希望这本书能够为基础知识打下坚实的基础,并让我们一瞥什么是可能的。机器学习,尤其是深度学习,是一门体验学科,而不是一门智力科学。每章中大量的端到端代码示例邀请您参与其中。

使用 PyTorch 进行自然语言处理

5.使用 PyTorch 应用深度学习

这本书是一本很棒的书,而且写得很好。知道我可以找到检测各种数据问题的方法。phython和机器学习的知识很有趣。

使用 PyTorch 应用深度学习将您对深度学习、其算法及其应用的理解提升到一个更高的层次。本书首先帮助您浏览深度学习和 PyTorch 的基础知识。一旦您精通 PyTorch 语法并能够构建单层神经网络,您将逐渐学会通过配置和训练卷积神经网络 (CNN) 来执行图像分类来解决更复杂的数据问题。随着章节的深入,您将发现如何通过实现循环神经网络 (RNN) 来解决 NLP 问题。

使用 PyTorch 进行应用深度学习

6.使用 PyTorch 进行深度学习

使用 PyTorch 平装书构建神经网络模型的实用方法 – 2018 年 2 月 23 日,作者:Vishnu Subramanian

如果您想深入学习 PyTorch,请不要再犹豫了。作者成功地展示了读者可以轻松使用的 PyTorch 实用知识。

51rNJXAuntL._SX404_BO1-204-203-200_

7. Pytorch 深度学习示例(第 2 版)

在 40 天内像 AlphaGo Zero 一样从零开始掌握深度学习

作者 Benjamin Young

Pytoch 是一个非常强大、灵活且流行的深度学习框架,但如果您没有太多深度学习背景,学习曲线可能会很陡峭。本书将通过许多有趣的现实世界示例,帮助您从零开始学习和掌握最新的 pytorch 深度学习技术。它涵盖了许多最先进的深度学习技术,例如:卷积神经网络 (CNN)、循环神经网络 (RNN)、Seq2Seq 模型、词嵌入、连接主义时间分类 (CTC)、自动编码器、动态记忆网络 (DMN) )、Deep-Q-learning(DQN/DDQN)、Monte Carlo Tree search (MCTS)、Alphago/Alphazero 等。这本书也可以作为如何在现实生活中使用和理解深度学习的快速指南。

Pytorch-Deep-Learning-by-Example

8. 使用 PyTorch 1.0 进行强化学习

探索使用 PyTorch 1.0 平装书构建自学习系统的高级深度学习技术——Armando Fandango 2020 年 2 月 11 日

本书首先向您介绍主要概念,这些概念将帮助您了解强化学习算法的工作原理。然后,您将探索各种主题,这些主题侧重于强化学习领域中最重要和最实用的细节。这本书还将提高您对不同强化学习方法及其算法的了解。随着您的进步,您将涵盖多臂老虎机问题、马尔可夫决策过程 (MDP) 和 Q 学习等概念,这将进一步磨练您开发自学代理的技能。本书的目标是帮助你理解为什么每个 RL 算法以及如何在构建这些代理中发挥重要作用。使用 PyTorch 1 进行动手强化学习。0 还将为您提供有关实施 PyTorch 功能和服务以涵盖一系列 RL 任务的见解。在此之后,您将探索 RL 在企业应用程序的不同部分(例如 NLP、时间序列和计算机视觉)中的使用深度。在结束最后几章时,您将介绍使用流行的 OpenAI Gym 工具包中的环境评估算法的部分。

使用 PyTorch 进行动手强化学习

9. PyTorch 深度学习实践

快速轻松地构建 CNN、RNN、GAN、强化学习等平装本 – 2019 年 4 月 30 日,作者 Sherin Thomas,Sudhanshu Passi

PyTorch Deep Learning Hands-On 展示了如何在 PyTorch 中实现主要的深度学习架构。它涵盖了神经网络、计算机视觉、CNN、自然语言处理 (RNN)、GAN 和强化学习。您还将使用 PyTorch 框架构建深度学习工作流程,将 Python 构建的模型迁移到高效的 TorchScript,并使用最复杂的可用工具部署到生产环境。

这是我开始学习机器学习时希望拥有的书之一。当然,我希望 PyTorch 的当前版本也在那时。如果您是初学者,它肯定会让您正确入门,如果您是专家,它将是一个很好的复习,如果您的知识只包括一些从数据中提取答案的现代方法,它将扩大您对机器学习技术的知识。

PyTorch-Deep-Learning-Hands

10.使用 PyTorch 进行深度学习快速入门指南

学习在 Python 平装书中训练和部署神经网络模型 - 2018 年 12 月 24 日,David Julian

本书将向您介绍 PyTorch 深度学习库,并教您如何轻松训练深度学习模型。我们将使用 PyTorch 搭建深度学习环境,然后训练和部署不同类型的深度学习模型,例如 CNN、RNN 和自动编码器。

这本书作为 PyTorch 的入门书非常好。我会给它五颗星,但不幸的是,RNN 章节很难理解。

PyTorch 快速入门指南

11. Python 深度学习

使用 PyTorch、Keras 和 TensorFlow 探索深度学习技术和神经网络架构,第 2 版平装本 – 2019 年 1 月 16 日,

作者:Ivan Vasilev(作者)、Daniel Slater(作者)、Gianmario Spacagna(作者)、Peter Roelants(作者)、Valentino佐卡 (作者)

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

### AI技术在鬼畜视频生成中的方法和工具 #### 方法概述 AI技术在鬼畜视频生成中的应用主要依赖于深度学习模型,尤其是基于生成对抗网络(GANs)、变分自编码器(VAEs)以及扩散模型的技术。这些模型能够通过训练大量数据来捕捉特定风格的视觉特征并生成高质量的内容。例如,在2024第一季度,随着多模态能力和AI生成视频技术的进步,视频生成领域实现了显著突破[^1]。 #### 工具介绍 目前市面上存在多种可用于鬼畜视频生成的工具和技术框架: 1. **Sora模型** OpenAI推出的Sora模型是一个重要的里程碑,它支持高分辨率、长时间连贯性的视频生成,适用于复杂的场景合成与人物动作模拟。这种能力可以被用来制作具有重复性和夸张效果的鬼畜片段。 2. **开源项目** 开源社区的发展极大地推动了AI技术的应用范围降低开发成本。许多开发者借助GitHub上的开源库如`PyTorch`或`TensorFlow`构建自己的定制化解决方案。对于初学者而言,《AI绘画》的学习资源也提供了一些入门指导,有助于理解如何操作此类复杂算法[^4]。 3. **Lib.Kalos.Art平台** Kalos艺术图书馆鼓励创作者打破传统界限尝试跨界融合设计思路。虽然其最初定位并非专门针对鬼畜文化圈层服务,但它所提供的创意启发同样适合应用于该领域探索新颖表现形式[^3]。 #### 技术实现流程 以下是利用上述提到的一些技术和工具来进行具体实践时可能涉及的关键环节: ```python import torch from diffusers import DiffusionPipeline # 加载预训练好的diffusion pipeline实例 pipeline = DiffusionPipeline.from_pretrained("model_name") def generate_ghost_video(prompt, num_frames=50): frames = [] for i in range(num_frames): frame = pipeline(prompt).images[0] frames.append(frame) return frames ``` 此代码片段展示了如何使用Python脚本调用一个预先定义好的管道对象完成一系列图像帧渲染工作从而形成连续动画序列的基础逻辑结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值