DeepSeek 大模型每个版本的特点以及运用场景对比


前排提示,文末有大模型AGI-CSDN独家资料包哦!

1. DeepSeek-V1
  • 发布时间:2024年1月

  • 参数规模:预训练数据量2TB,具体参数未明确公开,推测为数十亿级别

  • 功能特点

    • 编码能力:支持多种编程语言(如Python、Java、C++),可生成高质量代码框架。

    • 长上下文处理:支持128K上下文窗口,适用于技术文档分析和总结。

    • 局限性:多模态能力弱,复杂推理能力不足。

  • 适用场景:技术文档处理、基础代码生成。

2. DeepSeek-V2系列
  • 发布时间:2024年上半年

  • 参数规模:2360亿参数

  • 功能特点

    • 开源与低成本:完全开源且训练成本仅为GPT-4 Turbo的1%,适合商业化应用。

    • 代码生成优化:在HumanEval等测试中表现优异,支持复杂代码生成。

    • 局限性:推理速度较慢,多模态能力有限。

  • 适用场景:科研、商业应用开发。

3. DeepSeek-V2.5系列
  • 发布时间:2024年9月

  • 参数规模:基于V2架构优化,具体参数未公开

  • 功能特点

    • 数学与代码能力提升:在MATH-500测试中准确率从74.8%提升至82.8%,支持复杂算法和工程代码场景。

    • 联网搜索功能:可实时抓取网页信息,增强回答的实时性(但API暂不支持此功能)。

    • 模型合并:整合Chat(对话优化)和Coder(代码生成)模型,提升通用任务能力。

    • 局限性:暂无明确提及。

  • 适用场景:实时信息整合、教育辅导。

4. DeepSeek-V3系列
  • 发布时间:2024年12月26日

  • 参数规模:6710亿参数(MoE架构),激活参数370亿,预训练数据14.8万亿token

  • 功能特点

    • 多领域领先:在百科知识(MMLU)、长文本(LongBench)、代码(Codeforces)、数学竞赛(AIME 2024)等任务中超越多数开源和闭源模型。

    • 生成速度优化:吐字速度提升至60 TPS(每秒生成60个token),是V2.5的3倍。

    • 开源与本地部署:支持FP8权重开源,可通过SGLang、LMDeploy等工具部署。

    • 局限性:训练资源要求高,多模态能力不足。

  • 适用场景:长文本处理、代码竞赛、数学任务。

5. DeepSeek-R1系列
  • 发布时间:2025年1月20日(R1正式版)

  • 参数规模:6710亿参数(全激活)

  • 功能特点

    • 强化学习与推理能力:通过强化学习优化,擅长复杂逻辑推理(如数学竞赛、密码解密),并展示详细思考过程。

    • 多模态支持:支持文本、图像、音频融合处理,适用于电商文案生成、跨模态检索等场景。

    • 局限性:代码生成不稳定,知识引用能力不足。

  • 适用场景:跨模态交互、决策优化。

DeepSeek-R1系列细分模型
版本参数规模核心优势典型应用场景
DeepSeek-R1:1.5B1.5亿适合低配置电脑运行基础的文本处理任务,如简单的问答系统和智能助手;适合资源有限的环境,快速部署和响应
DeepSeek-R1:7B7亿提供更好的语义理解和上下文处理能力;中等规模,性能与资源消耗之间取得平衡适合中型企业的客户服务、内容生成和复杂的语音识别;在多任务处理时表现良好,适用于情感分析等任务
DeepSeek-R1:8B8亿性能优于7B,特别是在文本生成任务中;对于多模态数据(如图像与文本)处理能力增强适合内容创作、营销文案生成和复杂的对话系统;可以应用于需要更高生成质量的场景
DeepSeek-R1:14B14亿更大的参数量,提升了模型的理解和生成能力;在处理复杂任务时表现更佳适合专业领域的应用,如法律文书分析和医学研究;可用于需要深入理解和高准确率的高级对话系统
DeepSeek-R1:32B32亿适合高需求的企业级应用,能够处理复杂的上下文和语义推理;提供接近人类的理解能力高级咨询、深度学习服务和大规模数据分析;适用于需要高精度和复杂逻辑推理的任务
DeepSeek-R1:70B70亿更强大的处理能力,适合大规模应用和企业需求;在理解和生成能力上更为出色适合大型企业的复杂数据分析和决策支持系统;可用于需要深入分析和高效处理的行业应用,如金融和医疗
DeepSeek-R1:671B6710亿超大规模模型,具备最强的理解和生成能力高级AI研究、自然语言理解的前沿应用;适合需要极高精度和复杂推理的领域,如科学研究和技术开发

版本对比与适用场景
版本参数规模核心优势典型应用场景
V1约数十亿长上下文编码技术文档处理、基础代码生成
V2系列2360亿开源低成本科研、商业应用开发
V2.5系列未公开联网搜索与数学能力实时信息整合、教育辅导
V3系列6710亿(MoE)多领域性能领先、生成速度快长文本处理、代码竞赛、数学任务
R1系列6710亿多模态与复杂推理跨模态交互、决策优化

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT猫仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值