AI大模型时代的演进之旅:从基础模型、RAG到智能Agent与工作流

       引子:十年前,如果有人告诉你计算机程序可以像人类专家一样撰写文章、回答复杂问题,甚至自主规划完成任务,你可能会觉得这是科幻小说里的情节。然而在今天,这样的场景已变成现实:我们与 ChatGPT 对话,它能写代码、翻译诗歌;我们呼唤智能助手,它能帮忙安排日程、生成报告。这一切看似魔法般的飞跃背后,其实有一系列重要的概念与技术在发挥作用,包括大模型(基础模型)RAG(检索增强生成)、**智能 Agent(智能体)智能工作流(Workflow)**等。它们共同塑造了人工智能的新范式。接下来,我将以故事化的方式,带领大家一步步揭开这些概念的面纱,看看它们是什么,又如何彼此关联,驱动着 AI 技术的发展。

大模型:AI 的“大脑”革命

故事要从“大模型”开始讲起。如果把 AI 比作一个学生,那么过去的传统 AI 更像是专才——每训练一个模型,都只擅长一门“科目”。例如,早年的一个自然语言处理模型也许只会做情感分析,另一个只会翻译,因为它们都是为特定任务设计和训练的。而大模型(基础模型、预训练模型)的出现改变了这一切。大模型就像一位博览群书的通才,在海量数据上进行预训练,掌握了广泛的知识和技能,然后可以通过微调或提示,被引导去完成各种具体任务。

这种范式转变始于大约 2018-2019 年左右。那时 NLP 领域出现了里程碑式的成果——比如 BERT 等模型的突破,让研究者们发现:与其为每个任务定制一个“小而专”的模型,不如训练一个通用的基础模型,再根据需要轻微调整即可。事实证明,这样的基础模型在绝大多数任务上的表现远远胜过以往专门构建的任务特定模型。从那之后,越来越多强大的基础模型相继问世:GPT-2、BERT 的升级版 RoBERTa、T5、BART 等等,一时间“大模型范式”席卷了整个 AI 界 。

大模型有多大呢?举个例子,OpenAI 在 2020 年推出的 GPT-3 模型有1750 亿 个参数,而它的前代 GPT-2 只有 15 亿参数。参数规模扩大百倍带来的不仅是性能提升,还有一些意想不到的新能力。例如,GPT-3 展现出了上下文学习的能力:只需在提示中给出任务的描述或几个示例,它就能理解并完成下游任务,而无需像过去那样专门训练 。这种现象是 AI 领域前所未有的。可以说,大模型让 AI 从“模型为中心”的时代进入了“数据&知识为中心”的时代——模型本身通过读取海量文本学会了学习,成为一个强大的“大脑”,能够融会贯通多种任务。这正是新范式的开端。

当然,大模型的出现不仅是参数多了那么简单。它改变了 AI 开发的范式:以前构建 AI 系统,我们需要针对每个任务收集专门的数据、设计特定的模型架构;而在大模型时代,我们往往从一个预训练好的基础模型出发,通过少量的样本微调(Fine-tuning)或者干脆不做额外训练,只用提示(Prompt)来指挥模型,就能让它去完成各种各样的任务。这种模式极大降低了 AI 应用的门槛,也提高了适应性。换句话说,大模型就像打好了坚实地基的高楼,让我们可以在其上快速搭建出不同功能的房间。基础模型因此也被形象地称为*“Foundation Model”*,因为它为无数 AI 应用提供了共同的基础。

RAG:给 AI 装上“百科全书”和“搜索引擎”

有了一个见多识广的大模型做“大脑”,是不是就万事大吉了呢?现实中,大模型虽然博学,却并非无所不知。它的知识止步于训练数据,缺少最新的信息来源,而且有时它会一本正经地胡说八道,生成看似合理但实际上错误的内容——这种现象被称为幻觉。想象一下,你问一个训练截至 2021 年的模型“2025 年的世界杯冠军是谁”,它可能会由于缺乏信息而编造一个答案。这显然不能满足需求。那么,有没有办法让 AI 在需要时查阅资料、获取最新知识,再给我们答复呢?

答案就是 **RAG(Retrieval-Augmented Generation,检索增强生成)**技术。简单来说,RAG 就像是在 AI 的大脑旁边增加了一本 百科全书 和一个 搜索引擎。当用户提问时,AI 不仅动用自身的训练记忆去思考,还可以先去“查资料”——从外部知识库中检索相关的信息,然后结合这些资料再生成回答。

这一技术理念由 Facebook AI Research 团队于 2020 年提出。它通过将信息检索生成模型结合,赋予了大模型“开卷考试”的能力:先检索,后作答。其典型流程通常包括三个步骤:

  1. **检索(Retrieval):**根据用户查询,从预先构建的知识库中找出相关信息。现实中,这个知识库可以是维基百科文章集合、公司内部文档,甚至互联网搜索引擎的结果。为了高效匹配查询和文档,系统会把文本预先转换为“向量”(一种数值表示),通过向量相似度来找最相关的内容片段。
  2. **增强(Augmentation):**将检索到的内容与用户原始问题合并,形成一个增强过的提示(Prompt)。这个提示把外部知识充当“背景资料”提供给大模型,相当于为它补课,确保模型在回答时参考最新且相关的信息。
  3. **生成(Generation):**大模型接收到包含背景知识的提示后,基于其中的信息来生成回答。因为参考了检索资料,回答往往更加准确、有依据,并且能够涵盖最新的事实。

通过这样的检索增强流程,RAG 可以在很大程度上缓解大模型的知识截止和幻觉问题,让回答既丰富又可靠。举个日常的例子:当你在一个 RAG 驱动的问答系统中询问“今年诺贝尔奖的得主有哪些贡献?”,系统会先去检索相关新闻报道和维基百科内容,然后综合这些资料给出翔实的答复,并在回答中引入检索到的事实依据。这比起仅靠大模型固有的训练记忆作答,要可信得多。

RAG 技术已经实实在在地应用在我们的生活中。例如,许多搜索增强的问答系统正是 RAG 的产物:用户提问后,系统自动联网搜索,将检索结果送入大模型,从而生成包含最新信息的回答。微软的必应聊天、新版搜索引擎助手等都使用了类似思想。再比如国内近年来爆火的智能助手 Kimi,也是走的检索增强路线。Kimi 允许用户在提问时选择是否“联网”获取信息:当联网模式开启,如果你问它一个涉及最新资讯的问题,Kimi 会自动搜索网络资料再回答;即便在非联网模式下,用户也可以通过提示词要求它进行网络检索。据实测,Kimi 在这方面表现出色:例如,当要求“帮我解读马斯克最新的演讲”时,Kimi 会一次性检索多达 7 份相关资料并加以阅读理解,然后给出逻辑清晰、细节丰富的综合总结,而有些传统助手要么只能给出简单概括,要么干脆抛出搜索链接。

不仅如此,Kimi 还展示了惊人的长文本处理能力。它能够一口气读完数十万字的文档并准确回答细节问题。例如,有测试让 Kimi 阅读《甄嬛传》的完整剧本(几十万字),结果它不仅记住了情节脉络,还能回答人物关系和剧情走向等细节;又让它快速“学习”两本医学专著,随后 Kimi 竟然可以化身为“老中医”为用户进行中医问诊。这样的能力令人大开眼界——背后正是大模型强大的上下文理解力结合了检索和存储技术,使得 AI 可以临时“记住”海量文本内容,再利用这些内容完成用户交代的任务。

通过这些例子我们可以看到,RAG 相当于给 AI 配备了外部记忆工具:当自己的知识不够用时,就查询资料来充实自己,然后再给出回答。它让 AI 从“闭卷考试”变成了“开卷考试”,极大拓展了 AI 可以涉猎的知识范围。这就好比我们人类在回答困难问题时,会先翻阅书籍或搜索网络,然后带着找到的资料再来作答一样。对于终端用户来说,RAG 带来的直接好处就是答案更准确、更及时,AI 助手变得更加 **“知情达理”**了。

智能 Agent:让 AI 学会“计划”和“行动”

有了大模型的大脑和 RAG 的资料检索能力,我们的 AI 助手已经能回答各种问题,而且大多时候答案靠谱而详尽。那么,AI 接下来还能做什么?让我们把目光投向一个更具野心的目标:让 AI 像人一样自主地规划和执行复杂任务。这正是近一年里被广泛讨论的**“Agent”**概念的核心。

在人工智能领域,Agent 本义是指能感知环境并采取行动的智能体。这里我们特指的 AI Agent(智能代理),是基于大语言模型构建的一种 自主决策系统。简单打个比方:如果说传统的软件流程像一条预先铺好的铁路,火车沿轨道固定路线前进;那么 AI Agent 更像一辆可以自由驾驶的汽车,它具备一定的智能和 自主性,能够根据目的地自己决定路线,遇到障碍还能绕道或调整计划。

让我们通过一个小故事来理解 Agent 的作用。想象你有一个私人 AI 助手,小明。普通的大模型+RAG 助手,小明可以回答你的问题,给你建议。但如果你让它“帮我策划一次欧洲旅行并预订机票酒店”,传统助手可能只能给出一份旅行计划清单,具体预订还得你亲自去做。而一个 智能 Agent 则不同:它会先 规划 整个任务,比如确定行程路线、需要完成的子任务,然后它可以逐步 执行 这些子任务——调用工具去搜索航班并预订、打开浏览器填写酒店预订信息、在日历应用中添加行程等等,最终真正把旅行计划落实。这中间,Agent 需要能够 记忆 先前步骤的结果(比如已经订好了哪几晚的酒店),并根据新的情况随时调整计划(航班满员了就找替代航班)。整个过程中,它像一个训练有素的助理,一边动脑规划,一边动手操作。

听起来很神奇不是吗?其实,这种让 LLM 像人一样思考和行动的想法正是 AI 界近期的热门议题 。人们发现,既然大型语言模型已经具备了理解自然语言、分析问题甚至“链式思考”的能力,那么我们完全可以让它扮演决策者的角色:赋予它一个目标,让它结合已有知识和工具,通过复杂的逻辑分析去完成现实世界的任务。在这个过程中,Agent 还能通过与环境交互不断评估和优化自己的行为,就像人类会反思自己做得对不对一样。这样的 LLM 使用方式,实际上就形成了一个基于 LLM 的智能 Agent 系统。

那么,一个典型的 AI Agent 系统由哪些部分组成呢?首先核心依然是大语言模型本身,它是 Agent 的大脑,负责理解任务、分析问题并决定行动策略。除此之外,通常还需要几个关键模块来配合 :

  • 规划(Planner):负责制定行动计划。面对一个复杂目标时,Agent 需要把它拆解成一系列可执行的步骤,决定先做什么再做什么。这相当于脑海中规划路线。规划可以由 LLM 本身通过“思考”实现,也可以由一个专门的规划算法模块完成。在一些实现中,这一步称为**思维链(Chain-of-Thought)**推理,即模型在给出最终答案前先产出一串中间推理步骤,就像在脑海中打草稿。
  • **执行器(Executor):**负责执行具体动作。比如,当 Agent 决定“现在需要上网搜索一下最新天气”,执行器就会调用相应的搜索 API 并将结果返回给 Agent;或者 Agent 决定“运行一段代码计算答案”,执行器则负责在沙盒环境执行代码并反馈输出。可以理解为,执行器是 Agent 与外部环境交互的“手和脚”,按照 Agent 的指令实际动手操作。
  • **工具使用(Tools):**这是 Agent 可以调用的一系列外部工具的统称。工具可以是各种各样的东西——查询数据库、调用网络服务、运行计算程序、访问专有信息源等等 。工具为 Agent 扩展了能力边界:有了工具,一个语言模型 Agent 就不仅能对话,还能“触碰”外部世界(例如调用浏览器获取最新信息,或使用计算器进行精确计算)。正如前面的例子,小明 Agent 通过调用订票网站和日历应用这些“工具”,才能真正完成旅行预订任务。
  • 记忆(Memory):用来存储 Agent 在交互过程中的关键信息。这里的记忆可以分为短期记忆长期记忆 。短期记忆指的是当前对话或任务的上下文(类似于人类的工作记忆),通常由 LLM 的上下文窗口维护;长期记忆则可以通过外部存储(如向量数据库)实现,用于保存跨越多轮交互的重要信息,随时供 Agent 检索调用。比如一个持续工作的 Agent 需要记住之前已经完成了哪些子任务、遇到了哪些障碍,这些信息就可以存入长期记忆以备后续参考。

通过以上组件的分工协作,Agent 实现了一个闭环:感知-思考-行动-再感知。它感知环境(通过读取输入和工具反馈)、思考决策(由 LLM 规划)、付诸行动(调用工具执行),再将行动结果纳入记忆,继续下一步。如此循环,直到达到目标或无法继续。这个过程与我们人类解决问题的方式非常相似。

为何 Agent 概念在最近被热烈讨论?一方面,GPT-4 等强大的大模型让 Agent 变得可行——模型足够聪明,可以胜任规划和决策的角色;另一方面,一些早期的 自主 Agent 试验 惊艳了大众。2023 年初,一个名为 AutoGPT 的开源项目登上了各大社交媒体和开发者社区的热榜。AutoGPT 将 GPT-4 包装成一个可以自动循环执行的 Agent:用户只需要给它一个目标,它就会不停地为自己制定子任务、调用工具来尝试完成目标,还会生成新想法迭代,直到任务完成或耗尽预设循环。人们第一次看到 AI 经由简单的设定后竟能连续自主地执行这么多步,大呼过瘾。虽然 AutoGPT 在严肃任务上仍有很多局限,但它让大家看到了 Agent 的 潜力:未来,我们也许只需提出愿景,AI 代理就能替我们把繁琐的过程都跑通。正因如此,AI Agent 被视为 AI 下一个可能的飞跃方向。

需要强调的是,AI Agent 与传统的自动化流程有着显著区别。传统的自动化(比如工厂里的流水线,或者 IT 系统里的 RPA 流程机器人)遵循的是预先编排好的固定步骤,对环境变化的适应性很有限。如果流程中出现了未按剧本的发展,传统系统往往就“懵”了,需要人工介入修改规则。而 AI Agent 拥有灵活性和自主性:它不是死板地按脚本走,而是可以在运行中根据需要动态决策下一步该做什么。正如有评论形容的:“简单来说,工作流是蓝图,Agent 是执行者。工作流提供清晰的步骤和秩序,适合可预测的任务;Agent 则赋予系统智慧和灵活性,能应对复杂多变的环境”。Agent 的决策不是事先完全写死的,而是由 AI 根据实时情况现推理出来的。这种自主性使其在处理开放场景、复杂决策时具有传统自动化无可比拟的优势。

当然,两者也并非对立。智能 Agent工作流 可以优势互补,结合起来使用。在介绍工作流之前,我们先简单总结:Agent 让 AI 从被动应答者变成了主动执行者,赋予了 AI“行动力”和“主观能动性”。现在,一个有趣的问题是:如果我们希望在更大范围内利用 AI 的能力,比如让 AI 参与企业的整套业务流程,我们是完全依赖一个 Agent 从头到尾自由发挥好,还是预先设计好流程再让 AI 去填充执行更好呢?这就引出了 智能工作流 的概念。

智能工作流:AI 流程的“蓝图”与“管家”

在很多实际场景中,我们需要处理的是一系列有固定业务逻辑的任务。例如,一个公司的招聘流程通常包括候选人筛选、初试、复试、offer 审批等明确步骤;一个报销流程包括提交申请、主管审批、财务复核、打款等环节。这些按规则进行的工作流(Workflow) 早在 AI 流行之前就已经广泛存在,并有各种软件去自动化它们。传统工作流注重的是 流程的标准化和效率:确保每个步骤按照预定规则执行,不遗漏、不出错。

智能工作流概念是在传统工作流基础上融合了 AI 的能力。它依然是一套预定义的流程“蓝图”,但在流程的某些步骤上,引入了大模型或者 Agent 来完成原本需要人才能处理的复杂决策或创作工作,从而达到更高的自动化水平和灵活性。可以把智能工作流看作是架构师,而 AI Agent 是施工中灵活应变的工人,两者配合能够打造出既有秩序又有智能的系统。

让我们通过实例来看工作流和 Agent 如何区别与协同。想象一家互联网公司的内容审核流程:以前,每当用户发布一篇帖子,这篇帖子会自动通过关键词过滤(这是固定规则的一步),然后进入人工审核队列,由审核员查看内容是否合法,再决定通过或下架。这就是一个典型的工作流:先机器筛选,再人工决策,最后执行结果。现在引入 AI 大模型后,我们可以设计一个智能工作流:帖子发布后,系统触发大模型 Agent 自动审阅内容,根据政策给出处理建议;如果 AI 判断明确违法,直接执行下架动作(Agent 自行决策的一步);如果 AI 不确定,则将帖子标记给人类审核。这整个过程,AI Agent 作为“智能审核员”嵌入到了原有的工作流中,使流程自动化程度提高,但同时关键节点仍有预设的规则把控。这样既保证了流程的稳定性(流程步骤有据可循),又利用了 Agent 的灵活性来处理模糊情况。

从上述例子可以看出,工作流强调的是流程的结构化和可控,而 Agent 强调的是决策的动态灵活。工作流更适合那些步骤明确、重复性强的任务,把这些环节自动化后能大幅提升效率、减少错误。比如公文审批流、客户工单处理、报表生成等场景,事先规划好步骤,让系统按部就班执行非常可靠。而 Agent 擅长的是复杂多变、难以完全穷举规则的情境,因为它可以现学现卖、随机应变。例如客服咨询中,用户的问题千奇百怪,让 Agent 来自主应对可以提高响应的个性化和准确度;又比如市场分析,需要综合多方面数据和经验,Agent 可以边查资料边分析给出策略建议。

在实际应用中,智能工作流与 Agent 常常结合使用,形成取长补短的效果。一个常见的模式是:Agent 嵌入工作流。即在既定的工作流蓝图中,需要智能决策的节点交由 Agent 处理,需要标准执行的节点仍由固定流程完成。例如电商客服场景,当用户咨询一些常见问题时,由聊天机器人 Agent 实时回答;但一旦涉及比如退换货流程,需要走审批和库存检查等标准步骤时,则 Agent 触发后端的工作流系统处理后续环节。这种分工让用户体验到智能对话的便利,同时公司后台的流程也得到严格管理。

另一个模式是工作流调用 Agent 作为子流程。比如在企业办公中,有一个月度报告生成的工作流,每月自动收集本月业务数据、生成 PPT 报告并发送给管理层。传统上,数据汇总可以自动化,但写报告和制作 PPT 需要人工。现在可以这样设计:流程走到“撰写报告”这步时,调用一个文本生成 Agent,让它基于收集的数据自动撰写分析报告初稿;接着进入“审校”步由人工检查修改;然后再调用一个图表生成 Agent 将数据和结论制作成 PPT 图表。这其实是多个 Agent 分别胜任不同子任务,再由整体工作流串联起来完成复杂产出。这类智能工作流已经在一些企业中开始落地,用于自动化处理文档撰写、合同审核、财务分析等多步任务,提高了办公效率。

可以说,工作流提供框架Agent 注入智慧。前者保证流程的可控和可预期,后者提供灵活应对和认知能力。正如前文引用的那句话,工作流是蓝图,Agent 是执行者 。在 AI 时代,两者界限正逐渐模糊,结合使用往往能带来更大价值。企业在部署 AI 时,会根据场景需要选择用纯 Agent 还是工作流+Agent:如果任务非常开放,例如探索式的数据分析,可能让 Agent 自由发挥;如果任务有明确业务流程,例如贷款审批,则以工作流为主,关键节点用 Agent 智能辅助决策。智能工作流 因此成为 AI 落地的重要方式,它既不像完全自主 Agent 那样难以掌控,也比传统死板流程更加智能,是现实中稳健应用 AI 的中间道路。

技术背后的统一逻辑:模块化、可组合与思考能力

了解了基础模型、RAG、Agent 和工作流这些概念,我们不难发现它们背后有一些共通的思想 在支撑着 AI 系统的演进。

首先是模块化与可组合性。无论是 RAG 也好,Agent 也好,实际上都是在将 AI 的能力拆分成不同功能模块,然后再组合起来使用。大模型是核心的通用智能模块,但我们通过 RAG 加上了“检索模块”、通过 Agent 架构引入了“规划模块”“执行模块”“记忆模块”等。这种模块化设计让复杂任务得以被分解征服,每个模块各司其职。例如,LangChain 这样的开发框架正是体现了模块化思想:它把 LLM、检索器、工具接口、记忆存储等作为独立组件,开发者可以像搭积木一样把它们组合成不同用途的 AI 应用 。正因为模块化,我们才能方便地替换扩展某一部分能力(比如换用更强的搜索引擎,或添加一个新的专用工具),而不用推翻整个系统。这与软件工程中“高内聚、低耦合”的设计理念一脉相承。

其次是链式思维(Chain-of-Thought)和逐步推理。不管是大模型在解数学题时列出步骤,还是 Agent 在执行任务时划分子目标,本质上都是在模拟人类解决问题时的“逐步思考”。研究发现,让模型显式地一阶段一阶段推理,比起让它一蹴而就给出答案,往往效果更好。这就是所谓“思维链提示”技术——在提示中引导模型先写出思考过程,再给答案。链式思维不仅提升了模型的推理准确性,也让 AI 决策过程对我们来说更透明可追踪。在 Agent 框架中,我们甚至可以将模型的每一步思考都打印出来,以便调试和监督。可以说,逐步推理已经成为大模型应用中的基本原则之一,它贯穿于 RAG(检索-结合-生成的三段式流程)和 Agent(规划-执行-反馈的循环过程)的各个环节。

再次是反思与自我纠错机制。真正聪明的智能体,不仅能一步步完成任务,还应该能在过程中审视自己的行为并改进。这一点人类很擅长:我们会回顾之前的步骤是否有错误,并据此调整接下来的行动。类似地,给 AI 加入“反思(Reflection)”机制可以进一步提高可靠性。例如,在 Agent 执行过程中,设置一个步骤让模型审查自己产生的方案是否合理、前一步动作结果是否达到预期,如果发现问题就重新规划。这种自我反思机制已经在一些前沿研究和产品中出现:比如 AutoGPT 就引入过“Critic”角色来评价 Agent 提议的下一步行动;OpenAI 的计划中也探索过让 ChatGPT 先对自己的答案打分再完善。事实证明,让 AI 学会自我批评和改进能够减少犯错误的几率,提高最终结果质量。可以预见,未来的 AI 系统会越来越多地内置反思模块,让整个决策过程更像一个不断闭环优化的回路。

最后一个统一的逻辑是知识与推理相分离的思想。传统上,我们构建一个智能系统往往把知识库和推理程序混在一起。但大模型时代,我们倾向于让一个通用模型掌握推理和语言能力,再通过检索或工具调用去获取具体知识。这种架构实际上遵循了计算机科学里的分而治之职责分离原则:模型负责通用推理,知识库负责存储信息,工具负责与环境交互,各尽其职。这不仅提高了效率(因为不用为每个新知识再训练模型),也使系统更加灵活(知识更新只需更新数据库,不用重训模型)。从 RAG 到 Agent 再到 Workflow,都体现了这种组合逻辑——将不同能力来源的模块组合起来完成比单一模块更复杂的任务。

综上,基础模型、RAG、Agent、工作流这些表面看似不同的概念,其实在设计哲学 上是一脉相承的:通过模块化组合,把大模型的通才能力与专门工具/知识结合;通过链式分解,让 AI 像人一样逐步解决问题;通过反思迭代,不断逼近更佳结果。这些原则就像隐藏在背后的“统一逻辑”,指导着 AI 系统从一个阶段演进到下一个阶段。理解了这些逻辑,我们就不难预见未来 AI 的发展方向:那就是构建更复杂但也更稳健的智能组合系统,在各行各业中发挥作用。

融合实例:当今主流产品中的概念应用

说了这么多概念,最后我们通过几位 AI“明星”的故事,来看看这些理念是如何在当今主流产品和框架中融会贯通,发挥威力的。

  • ChatGPT:ChatGPT 无疑是大模型浪潮的开拓者之一。作为一个基于 GPT 系列大模型微调而来的对话系统,它展现了基础模型强大的语言理解和生成能力。ChatGPT 能回答各种问题、撰写文章,背后依靠的正是庞大的预训练模型以及随后的人类反馈强化学习调优。虽然最初版本的 ChatGPT 没有联网检索能力,但通过后续插件机制,它也开始拥抱 RAG 思想,让用户在提问时可以调用浏览器、数据库等工具获取信息,进一步提高答案的准确度(例如可以实时查询天气、新闻等)。可以说,ChatGPT 主要体现了大模型的通才能力,让大众亲身体验到范式转变的威力,同时它也为 Agent 的萌芽打下基础——许多人第一次想到“让 AI 帮我完成复杂任务”的灵感,正是来源于与 ChatGPT 的交互。

  • Bing Chat / 新必应:微软的新必应搜索其实是 RAG 一个直观的应用案例。它将 GPT-4 大模型与必应搜索引擎结合,当用户询问时,先检索网页信息,再由大模型综合搜索结果作答。这正是典型的检索增强生成流程。在回答中,新必应还会给出引用来源链接,让用户可以点击查看原始资料。这种做法极大增强了回答的可信度,让用户对 AI 的回答“心中有数”。新必应的出现标志着搜索引擎开始从纯信息检索工具向**“智能信息助手”**转变——用户得到的不再是一堆链接,而是整合后的答案,从而节省了自行筛选信息的时间。

  • LangChain:这是一个面向开发者的开源框架,却在 AI 应用圈声名鹊起。LangChain 本身不提供新的模型,而是提供了一套便捷的“搭建流水线”的工具。开发者可以用 LangChain 很轻松地把大模型接入各种数据源(文本、数据库、API)或工具,并控制模型与工具交互的逻辑。例如,你可以用 LangChain 几行代码构建一个 QA 系统:连接一个向量数据库用于知识检索,然后调用 OpenAI 的 GPT 接口生成答案。也可以用它构建一个多工具 Agent,让模型按 ReAct(先推理再行动)框架决定何时搜网、何时算数。LangChain 的流行充分说明了模块化、工作流思维的重要性:它抽象出了常见的 RAG 和 Agent 模式,提供现成组件,降低了构建复杂 AI 应用的门槛。很多创业公司和个人开发者都用 LangChain 来快速开发原型,这也加速了 AI 新产品的涌现。

  • AutoGPT:前文提到的 AutoGPT 可以算是现象级的实验产品。它不是由大厂推出,而是社区开发者的创造,但却一度刷屏。AutoGPT 把“让 AI 自己调用自己”这个想法付诸实践:GPT-4 被包装成一个循环 Agent,不断生成下一步行动、执行、再评估,再生成下一个行动,试图朝着用户给定目标前进。比如用户让它“帮我研究有哪些创业机会”,AutoGPT 就会自动地去搜索市场信息、分析可行性、汇总成报告。一些人戏称这类系统为“AI 劳模”或者“数字员工”。尽管 AutoGPT 在效率和可靠性上还称不上成功,但它的意义在于 验证了 Agent 自治的可能性,并暴露了其中的挑战(比如容易在不必要的步骤上来回打转,或者对复杂任务难以收敛)。AutoGPT 启发了后续许多项目和研究,如 BabyAGI、AgentGPT 等,大家都在尝试改进自主 Agent 的规划、记忆和反思机制。这股浪潮也让业界意识到:也许真正强大的 AI 系统,不是一个无所不能的模型,而是一个能自主调用各种能力**的智能体。

  • Microsoft 365 Copilot: 这是微软将大模型深度融入办公软件套件(Word、Excel、Outlook 等)的产品。Copilot 的意义在于将智能工作流落地到大众日常办公中。它可以读取你的 Office 文档、邮件和日历等企业数据(通过微软 Graph 接口),然后配合 GPT-4 模型,帮你完成许多以前需要手工的事务:例如,根据几封相关邮件自动整理出一份会议纪要,或者直接在 Word 中根据提纲和参考资料起草一份报告初稿。365 Copilot 事实上运用了 RAG 技术来保证对用户私有数据的引用:它会先检索用户的相关文件内容作为提示的一部分,再让大模型生成结果。此外,Copilot 还能跨应用执行操作,比如你在 Teams 里让 Copilot 总结一下某个项目的进展,它会去搜索 SharePoint 上的文件、Outlook 的邮件记录,然后生成总结发回 Teams 聊天。这有点类似一个在 Office 环境中的专属 Agent,按需把不同应用的数据和功能串联起来,组成一个办公流程。对于职场人士来说,这种协助就像突然多了一个能干的智能秘书,极大提高了日常工作的效率。微软 Copilot 的发布让业界看到,AI 不止是聊天和问答,它完全可以融入专业软件的工作流,改变白领工作的范式。

  • Kimi 智能助手:作为国内大模型应用的代表,Kimi 的走红反映出用户对长文本处理和专业知识问答的强烈需求。Kimi 基于国产大模型搭配了自己独特的增强技术,亮点在于前面提到的超长上下文和检索能力。用户可以把海量的 PDF、Word 文档拖给 Kimi,让它帮忙总结、问答,这对于学生和职场人士都有巨大吸引力。比如大学生用它来整理课程资料要点,研究人员让它阅读多篇论文后提炼综述。Kimi 也提供联网模式,可以查新闻、找资料,再用大模型撰写回答(类似必应聊天的思路)。可以说,Kimi 把 RAG 和大上下文 功能做到了极致,让用户感到“我面对的是一个拥有全网知识和图书馆藏书的聪明助手”。它的成功也刺激了国内其它大模型产品加快跟进相关功能。Kimi 还体现出产品化的一些细节,比如提供接口方便调用、在对话中允许用户调节是否开启检索等等。这些都代表着 AI 助手向着 实用工具 的方向演进,而不只是一个 demo 式的聊天机器人。

通过以上这些案例,我们可以看出,大模型、RAG、Agent、工作流等概念并不是割裂存在的。在实际产品中,往往是你中有我,我中有你:ChatGPT 这样的对话模型也开始借助工具变得“Agent 化”;专注 Agent 的 AutoGPT 也离不开背后强大的大模型和检索支持;工作流产品 Copilot 其实内部运用了 RAG 和 Agent 技术来执行办公任务;而像 Kimi 这样的助手则几乎把能用的技巧都用上了(大模型、长上下文、检索、多模态等),从而全面提升用户体验。AI 领域就这样呈现出百花齐放又殊途同归的景象:不同的技术流派最终都在朝着打造更聪明、更通用的人工智能这个共同目标前进。

结语:协奏的未来

站在现在这个时间点回望,我们仿佛看到了人工智能发展史上一场精彩的接力:大模型奠定了通用智能的基石,RAG 为其插上了获取新知的翅膀,Agent 赋予了 AI 自主行动的灵魂,工作流 则为 AI 融入现实应用搭建了桥梁。这些概念如同乐队中的各色乐器,在 AI 变革的舞台上各展所长,又相互配合,奏响了智能新时代的序曲。

对于普通用户而言,也许不需要了解每个技术细节,但知道这些名词背后的原理和意义,有助于我们更好地理解当下层出不穷的 AI 产品。不再把 ChatGPT 的回答视作不可思议的魔法,我们会意识到它是大模型+微调的成果;遇到能联网查资料的机器人,我们知道这是 RAG 在发挥作用;看到号称自动化工作的 AI 助手,我们明白那是 Agent 在幕后运转;企业引入 AI 协作平台,我们能联想到智能工作流在其中扮演了重要角色。这样一来,我们在使用这些 AI 工具时也能更理性、更高效,甚至可以思考如何将它们应用到自己的问题场景中。

人工智能的发展还在加速。也许很快,我们会见到更多融合了“大模型 + RAG + Agent + Workflow”于一体的强大系统(比如 Dify),它们可以像人类团队那样协同工作,为我们完成复杂的任务。未来的 AI 助手可能既能上知天文下晓地理(大模型提供知识),又能即时查阅最新资料(检索增强),还能自主帮我们在网上办理各种事务(Agent 能力),并且无缝地嵌入我们的日常软件和生活流程中(就像最近大火的 Manus)。

当然,AI 的进化带来了希望,也伴随挑战。正如大模型范式转变初期人们对技术和伦理提出的疑问一样,在 Agent 和工作流大行其道后,我们也需要关注 AI 决策透明度、责任划分以及安全控制等问题。但不管怎样,掌握这些关键概念能让我们以更清晰的思路去展望和应对未来。

希望本文能帮助你梳理人工智能大模型相关领域的重要概念及它们之间千丝万缕的联系。从基础模型的横空出世,到 RAG 为模型插上知识的翅膀,再到 Agent 赋予 AI 主动性、工作流将 AI 引入千行百业,这场 AI 新范式的演进之旅才刚刚开始。而我们每一个人,都有幸作为见证者甚至参与者,站在这一历史进程的起点,一同去领略智能时代的精彩篇章。

如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击文章底部名片大模型重磅福利:入门进阶全套104G学习资源包免费分享!

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

大模型全套视频教程

200本大模型PDF书籍

👉学会后的收获:👈

  • 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
  • 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
  • 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
  • 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

大模型产品经理资源合集

大模型项目实战合集

👉获取方式:
😝有需要的小伙伴,可以点击下方名片保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型coke

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值