引言
在计算机图形学领域,3D 场景重建与渲染技术一直占据着至关重要的地位。从早期简单的几何模型构建,到如今追求高度逼真的虚拟场景再现,这一领域的技术发展日新月异。它不仅在影视特效、游戏开发、虚拟现实(VR)和增强现实(AR)等娱乐产业中大放异彩,还在工业设计、建筑规划、自动驾驶、文物保护等众多领域发挥着不可或缺的作用。比如在电影制作中,通过 3D 场景重建与渲染技术,我们能够打造出奇幻的外星世界、震撼的灾难场景;在游戏里,能为玩家呈现出沉浸式的虚拟环境,带来极致的游戏体验;在自动驾驶领域,帮助车辆更好地感知周围环境,实现安全行驶。
而 3D Gaussian Splatting 作为其中的新兴技术,正逐渐崭露头角,吸引了众多研究者和开发者的目光。它以独特的方式对 3D 场景进行表示和渲染,为解决传统技术中的一些难题提供了新的思路和方法 ,有望推动 3D 场景重建与渲染技术迈向新的高度。
一、3D Gaussian Splatting 是什么
3D Gaussian Splatting 是一种创新的 3D 场景重建与渲染技术,它的出现为计算机图形学领域带来了新的发展方向。其核心在于巧妙地运用 3D 高斯函数来表示三维模型 ,并借助 Splatting 技术将三维场景渲染到二维屏幕上,从而实现高质量的 3D 场景重建与渲染效果。
3D 高斯函数表示三维模型的原理
在 3D Gaussian Splatting 中,每个 3D 高斯函数可看作是一个在三维空间中具有特定属性的 “小椭球” 。这些属性包括位置、协方差、颜色和透明度等 。具体来说,位置(均值向量)决定了高斯函数在三维空间中的中心位置,就像在地图上确定一个点的坐标一样,明确了它在整个场景中的具体方位。协方差矩阵则定义了高斯分布的形状和方向,如同一个可以调整形状和角度的模具,决定了这个 “小椭球” 在各个方向上的伸展程度和朝向,让其能够灵活地适应不同物体表面的曲率和细节。
颜色信息可以通过球谐函数(SH)系数或者直接的 RGB 值来表示。球谐函数是一组定义在球面上的特殊函数,在计算机图形学中,它能够有效地描述球面上的任意函数,通过对球谐函数系数的调整,可以准确地模拟出不同光照条件下物体表面的颜色变化,为场景增添丰富的视觉效果。而透明度则控制了高斯函数在渲染过程中的可见程度,就像调节玻璃的透明度一样,使得多个高斯函数在叠加时能够产生自然的融合效果,避免出现生硬的边界。
通过大量这样的 3D 高斯函数的组合,就可以构建出复杂的三维模型。每个高斯函数都像是构成模型的一个微小部件,它们相互协作,共同描绘出物体的形状、颜色和细节。例如,在重建一个人体模型时,不同位置的高斯函数可以分别表示头部、四肢、躯干等部位,通过调整它们的参数,就能精确地还原出人体的形态和表面特征。
Splatting 技术将三维场景渲染到二维屏幕的过程
Splatting 技术是实现将三维场景渲染到二维屏幕的关键步骤。它是一种主动的体渲染方法,与传统的被动式光线投射方法(如 NeRF)有着本质的区别。在 Splatting 技术中,核心思想是将每个 3D 高斯函数视为一个 “发光粒子” ,然后主动计算这些 “发光粒子” 如何影响二维屏幕上的像素点。
在渲染过程中,首先要将 3D 高斯函数从三维空间投影到二维屏幕空间。这就好比将一个立体的物体投影到一张平面的纸上,通过特定的投影变换矩阵,将三维高斯函数的位置和形状信息映射到二维平面上,确定其在屏幕上的位置和影响范围。在这个过程中,需要考虑到相机的位置、视角等因素,以确保投影的准确性。
接着,计算每个投影到二维屏幕上的 3D 高斯函数对像素点的颜色和透明度贡献。由于每个高斯函数都有自己的颜色和透明度属性,当多个高斯函数的投影区域重叠时,就需要通过 alpha - blending 技术来混合它们的颜色和透明度。alpha - blending 是一种根据透明度值来混合颜色的方法,简单来说,就是对于重叠区域的像素点,根据各个高斯函数的透明度权重,计算出最终的颜色值,使得渲染结果更加平滑和自然。就像在绘画中,将不同颜色的颜料按照一定比例混合在一起,形成新的颜色。
将所有 3D 高斯函数对像素点的贡献累加起来,就得到了最终渲染出的二维图像。通过这样的方式,Splatting 技术能够高效地将由 3D 高斯函数表示的三维场景转化为我们在屏幕上看到的逼真图像 。
二、技术原理大揭秘
(一)3D 高斯表示
在 3D Gaussian Splatting 技术中,3D 高斯表示是其核心基础之一。每个 3D 高斯函数可以看作是一个在三维空间中具有丰富属性的 “小椭球” ,这些属性主要由位置、协方差、颜色和透明度等参数来精确描述。
位置参数,用一个三维坐标向量(x, y, z)来表示,它就像是在三维空间坐标系中的一个定位器,明确地指出了该高斯函数在整个场景中的具体位置。例如,在一个虚拟的房间场景重建中,某个高斯函数的位置参数可能表示它处于房间的左上角位置,精确到具体的坐标数值,为后续的场景构建提供了基础的空间定位。
协方差参数则通过一个 3x3 的矩阵来定义,这个矩阵在确定高斯分布的形状和方向上起着关键作用。它能够灵活地调整高斯函数在各个方向上的伸展程度和朝向,以适应不同物体表面复杂的曲率和细节。比如,对于一个表面平滑的球体,协方差矩阵会使得高斯函数在各个方向上均匀分布,呈现出接近球形的形状;而对于一个细长的圆柱体,协方差矩阵会让高斯函数在圆柱的轴向方向上伸展,在径向方向上收缩,从而准确地拟合圆柱体的形状特征。
颜色信息可以通过两种方式来表示,一种是利用球谐函数(SH)系数,另一种是直接采用 RGB 值。球谐函数是一组定义在球面上的特殊函数,在计算机图形学领域有着广泛的应用。它能够高效地描述球面上的任意函数,通过对球谐函数系数的精细调整,我们可以逼真地模拟出在不同光照条件下物体表面的颜色变化,为场景增添丰富多样的视觉效果。而 RGB 值则是我们更为熟悉的颜色表示方式,通过红、绿、蓝三种颜色通道的不同强度组合,直接定义了高斯函数所代表区域的颜色。
透明度参数控制着高斯函数在渲染过程中的可见程度,取值范围通常在 0(完全透明)到 1(完全不透明)之间。它就像一个可以调节的 “透明开关”,使得多个高斯函数在叠加时能够产生自然流畅的融合效果。当多个高斯函数的投影区域重叠时,根据它们各自的透明度权重,通过 alpha - blending 技术对颜色进行混合,从而避免出现生硬的边界,让渲染结果更加平滑和自然。
3D 高斯表示在离散和连续之间取得了巧妙的平衡,这是其相较于其他表示方法的显著优势之一。在离散方面,每个高斯函数都可以看作是对三维空间中一个特定点或小区域的离散表示,通过大量这样的离散高斯函数的组合,能够构建出复杂的三维场景。而在连续方面,高斯函数本身是一种连续的数学函数,其分布特性使得在对场景进行渲染和优化时,能够自然地处理平滑过渡和细节变化,避免了传统离散表示方法中可能出现的锯齿、不连续等问题。例如,在渲染一个具有光滑表面的物体时,3D 高斯表示能够通过调整高斯函数的参数,使得物体表面的颜色和形状过渡非常自然,就像真实物体在人眼中的视觉效果一样,为后续的渲染和优化过程提供了高效且优质的基础。
(二)Splatting 技术
Splatting 技术作为 3D Gaussian Splatting 的另一个关键组成部分,是一种主动的体渲染方法,它与传统的被动式光线投射方法(如 NeRF)有着显著的差异。
在传统的被动式光线投射方法中,以 NeRF 为典型代表,其基本原理是从相机位置出发,沿着相机的视线方向发射光线,然后对光线与场景的交点进行采样,通过神经网络预测这些采样点的颜色和体积密度,最后通过体渲染技术将这些采样点的信息合成为最终的图像。这个过程就像是用一根根 “光线探针” 去探测场景,根据探测到的信息来构建图像,它依赖于对光线与场景的逐点交互进行模拟,计算量较大,尤其是在处理复杂场景时,需要对大量的光线和采样点进行计算,导致渲染速度较慢。
而 Splatting 技术则采用了一种截然不同的思路。它将每个 3D 高斯函数视为一个具有自身属性(位置、颜色、透明度等)的 “发光粒子” ,然后主动地计算这些 “发光粒子” 如何影响二维屏幕上的像素点。在渲染过程中,首先要进行投影变换,将 3D 高斯函数从三维空间准确地投影到二维屏幕空间。这就好比将一个立体的物体投影到一张平面的纸上,通过特定的投影变换矩阵,考虑相机的位置、视角、焦距等因素,将三维高斯函数的位置和形状信息映射到二维平面上,确定其在屏幕上的位置和影响范围。
接着,计算每个投影到二维屏幕上的 3D 高斯函数对像素点的颜色和透明度贡献。由于每个高斯函数都有自己独特的颜色和透明度属性,当多个高斯函数的投影区域重叠时,就需要通过 alpha - blending 技术来混合它们的颜色和透明度。alpha - blending 是一种基于透明度值来混合颜色的方法,简单来说,就是对于重叠区域的像素点,根据各个高斯函数的透明度权重,按照一定的数学公式计算出最终的颜色值。例如,假设有两个高斯函数 A 和 B,它们在某个像素点的透明度分别为 αA 和 αB,颜色分别为 CA 和 CB,那么该像素点最终的颜色 C 就可以通过公式 C = αA * CA + (1 - αA) * αB * CB 来计算,使得渲染结果更加平滑和自然,就像在绘画中,将不同颜色的颜料按照一定比例混合在一起,形成新的颜色。
将所有 3D 高斯函数对像素点的贡献累加起来,就得到了最终渲染出的二维图像。通过这种主动计算 “发光粒子” 对像素点影响的方式,Splatting 技术能够高效地将由 3D 高斯函数表示的三维场景转化为我们在屏幕上看到的逼真图像 ,在渲染速度上相较于被动式光线投射方法有了显著的提升,尤其适用于实时渲染等对速度要求较高的应用场景。
(三)训练与渲染过程
3D Gaussian Splatting 的训练与渲染过程是实现高质量 3D 场景重建与渲染的关键环节,它们相互配合,共同完成从原始图像数据到逼真 3D 场景呈现的转换。
训练过程
使用结构光(SfM)方法从 2D 图像中估计 3D 点云:这是训练的第一步,结构光(Structure from Motion, SfM)方法是一种从一组 2D 图像中恢复 3D 结构信息的技术。它通过分析不同图像之间的特征匹配关系,利用三角测量等原理,计算出场景中各个点在三维空间中的位置,从而估计出 3D 点云。例如,在对一个建筑物进行 3D 重建时,我们从不同角度拍摄多幅建筑物的照片,SfM 方法会自动检测这些照片中的特征点(如建筑物的墙角、窗户边缘等),然后通过匹配这些特征点在不同图像中的位置,计算出它们在三维空间中的坐标,最终生成一个包含建筑物大致形状的 3D 点云。在实际应用中,可以直接调用成熟的 COLMAP 库来完成这一步骤,COLMAP 库提供了高效且准确的 SfM 算法实现,大大简化了开发流程。
将点转换为高斯函数:在得到 3D 点云后,接下来需要将每个点转换为高斯函数。从 SfM 数据中,我们可以初步推断出每个高斯函数的位置和颜色信息。位置信息直接对应 3D 点云中点的坐标,而颜色信息则可以根据该点在原始 2D 图像中的颜色进行确定。然而,对于一般的栅格化渲染来说,仅从 SfM 数据推断出的这些信息可能还不够,为了产生更高质量的场景表征,我们还需要对每个高斯函数进行进一步的训练。
通过随机梯度下降方法训练高斯函数参数:这一步类似于神经网络的训练过程,但这里没有神经网络的层的概念,所有的操作都是围绕 3D 高斯函数展开。具体的训练步骤如下:
用当前所有可微高斯图像渲染出图像:使用可微分高斯光栅化技术,将当前的 3D 高斯函数渲染为二维图像。这个过程中,每个高斯函数都被投影到二维屏幕上,并根据其参数计算对每个像素点的贡献,最终生成一幅渲染图像。
根据渲染图像和真实图像之间的差异计算损失:将渲染得到的图像与原始的真实图像进行对比,通过计算两者之间的差异来确定损失值。常用的损失函数包括 L1 损失和 SSIM(Structural Similarity Index Measure)损失等。L1 损失衡量的是渲染图像和真实图像对应像素点颜色值的绝对差值之和,它能够直观地反映出图像在颜色上的差异;而 SSIM 损失则更注重图像的结构相似性,考虑了图像的亮度、对比度和结构等多个因素,能够更全面地评估图像的质量。
根据损失调整每个高斯图像的参数:根据计算得到的损失值,使用随机梯度下降法来调整每个高斯函数的参数,包括位置、协方差、颜色和透明度等。随机梯度下降法是一种迭代优化算法,它通过在损失函数的梯度方向上逐步调整参数,使得损失值不断减小,从而使渲染图像逐渐逼近真实图像。在调整参数的过程中,还会应用自动致密化及修剪策略:如果某个高斯函数的梯度很大,说明它与真实情况相差较大,此时对其进行分割或克隆操作,以更好地拟合场景细节;如果高斯函数很小,可能表示它对场景的贡献较小,为了提高计算效率,可以对其进行克隆操作;如果高斯函数很大,可能会导致细节丢失,此时将其分割;如果高斯函数的 alpha(透明度)太低,说明它对图像的影响较小,将其删除。通过这些操作,能够帮助高斯函数更好地拟合精细的细节,同时修剪掉不必要的高斯函数,提高训练效率和场景表示的准确性。
渲染过程
使用可微分高斯光栅化将高斯函数渲染为图像:在渲染阶段,首先要将训练好的 3D 高斯函数通过可微分高斯光栅化技术渲染为图像。这一过程包括从相机角度将每个高斯函数投影为 2D 图像,然后按深度对高斯函数进行排序。在投影过程中,根据相机的位置、姿态和投影矩阵,将三维空间中的高斯函数映射到二维屏幕上,确定其在屏幕上的位置和大小。按深度排序是为了确保在后续的像素计算中,离相机近的高斯函数先被处理,这样可以正确地处理遮挡关系,保证渲染结果的真实性。
计算渲染图像与真实图像之间的损失并调整高斯参数:在渲染出图像后,同样需要计算渲染图像与真实图像之间的损失,以评估渲染结果的质量。如果损失值较大,说明渲染图像与真实图像之间存在较大差异,此时需要根据损失值对高斯函数的参数进行微调。虽然在训练阶段已经对高斯函数进行了大量的优化,但在渲染过程中,由于视角的变化等因素,可能仍然需要对参数进行一些小的调整,以确保在不同视角下都能获得高质量的渲染效果。不过,需要注意的是,渲染阶段的参数调整通常是在一个较小的范围内进行,并且计算量相对训练阶段要小很多,以保证渲染的实时性。通过这样的训练与渲染过程,3D Gaussian Splatting 技术能够不断优化 3D 高斯函数的参数,从而实现高质量的 3D 场景重建与渲染,为用户呈现出逼真的虚拟场景。
三、优势尽显:为何它脱颖而出
3D Gaussian Splatting 在 3D 场景重建与渲染领域能够迅速崭露头角,离不开其自身所具备的显著优势。这些优势使其在与传统方法以及其他新兴技术的对比中脱颖而出,为众多应用场景带来了新的可能性。
(一)高效性
在 3D 场景渲染的漫长发展历程中,传统基于三角形的渲染方法长期占据主导地位。这种方法将 3D 模型分解为大量的三角形面片,通过对这些三角形面片进行光栅化处理,将其逐个绘制到屏幕上,从而构建出最终的 3D 场景图像。在渲染一个复杂的虚拟城市场景时,需要将城市中的建筑物、道路、植被等各种元素都用大量的三角形面片来表示。据统计,一个中等规模的虚拟城市场景可能包含数百万甚至数千万个三角形面片。在渲染过程中,计算机需要对每个三角形面片的顶点进行坐标变换、光照计算等操作,然后将其投影到二维屏幕上进行绘制。由于三角形面片数量庞大,计算量巨大,导致渲染速度较慢,尤其是在处理复杂场景和高分辨率图像时,渲染效率低下的问题更加突出。
而 3D Gaussian Splatting 使用高斯函数重建场景,从根本上改变了渲染的方式。它不再依赖于大量的三角形面片,而是通过一系列的 3D 高斯函数来表示场景。这些高斯函数能够在离散和连续之间取得良好的平衡,在表示复杂场景时,能够用相对较少的高斯函数来捕捉场景的主要特征和细节。在渲染上述虚拟城市场景时,3D Gaussian Splatting 可能只需要使用数十万甚至更少数量的高斯函数就能达到与传统三角形渲染方法相当的效果。在渲染速度上,由于高斯函数的计算特性,其渲染过程更加高效。高斯函数的投影和融合计算相对简单,不需要像三角形渲染那样进行大量的顶点计算和面片处理。在计算每个高斯函数对像素点的贡献时,可以利用高斯函数的数学性质进行快速计算,大大减少了计算量。同时,3D Gaussian Splatting 还采用了分块并行光栅化等技术,将图像划分为多个小块,并行地进行渲染计算,进一步提高了渲染速度。实验数据表明,在相同的硬件条件下,3D Gaussian Splatting 的渲染速度相较于传统基于三角形的渲染方法提升了数倍甚至数十倍,能够轻松实现实时渲染,满足了如虚拟现实、实时游戏等对渲染速度要求极高的应用场景的需求。
(二)灵活性
高斯函数的参数化表示为 3D 场景的编辑和控制带来了前所未有的灵活性。在传统的 3D 场景表示方法中,如基于多边形网格的表示,对场景进行修改和调整往往需要复杂的操作,涉及到大量的顶点和边的编辑。当需要对一个基于多边形网格的 3D 模型进行局部形状修改时,需要手动选择和调整相关的顶点和边,这个过程不仅繁琐,而且对于复杂模型来说,很难精确地控制修改的范围和效果。
而在 3D Gaussian Splatting 中,每个高斯函数都有明确的参数,包括位置、协方差、颜色和透明度等。通过简单地调整这些参数,就可以轻松地对场景进行各种编辑操作。当需要改变场景中某个物体的形状时,只需要调整表示该物体的高斯函数的协方差参数,就可以改变其形状和大小,实现对物体形状的精确控制。在调整颜色方面,通过修改高斯函数的颜色参数(可以是球谐函数系数或 RGB 值),可以快速地改变物体的颜色和材质属性,例如将一个红色的球体变成蓝色的金属质感球体,只需要在相应的高斯函数中调整颜色参数即可。在场景布局调整上,通过改变高斯函数的位置参数,可以方便地移动场景中的物体,实现场景的重新布局。在一个室内场景中,将沙发从房间的一角移动到另一角,只需要修改表示沙发的高斯函数的位置参数即可。这种基于参数化表示的灵活性,使得 3D 场景的编辑和控制变得更加直观、高效,大大降低了 3D 场景制作的难度和成本,为创作者提供了更多的创作自由和可能性。
(三)高质量
3D Gaussian Splatting 在较短的训练时间内就能够实现接近 SOTA(State-of-the-Art,即当前最优水平)级别的视觉效果,这在众多 3D 场景重建与渲染技术中是非常突出的优势。以一些经典的 3D 场景重建数据集为例,如 Tanks and Temples 数据集,该数据集包含了各种复杂的真实场景,如古老的寺庙、大型的坦克模型等,对 3D 重建技术的精度和视觉效果要求极高。在使用 Mip-NeRF360 等传统先进方法进行场景重建时,虽然能够获得高质量的结果,但往往需要长达 48 小时甚至更长时间的训练。而 3D Gaussian Splatting 在相对较短的时间内,如几个小时到十几小时,就能在这些数据集上实现与之相当甚至在某些方面更优的视觉效果。在重建的场景细节方面,3D Gaussian Splatting 能够清晰地还原出物体的纹理、表面的细微特征等。在重建古老寺庙的场景时,能够精确地呈现出寺庙墙壁上的雕刻纹理、柱子的表面质感等细节,使得重建后的场景更加逼真。在处理光照效果方面,3D Gaussian Splatting 通过对球谐函数系数的合理运用,能够准确地模拟出不同光照条件下场景的光影变化,让场景中的物体在不同光照角度下都能呈现出自然的明暗过渡和反射效果,进一步提升了视觉效果的质量。这种在短时间内实现高质量视觉效果的能力,使得 3D Gaussian Splatting 在实际应用中具有很强的竞争力,能够快速地为用户提供高质量的 3D 场景重建和渲染结果,满足了如影视制作、游戏开发等对时间和质量都有较高要求的行业需求。
四、应用领域大探索
3D Gaussian Splatting 凭借其独特的技术优势,在众多领域展现出了巨大的应用潜力,为这些领域带来了新的发展机遇和变革。
(一)实时渲染
在实时渲染领域,3D Gaussian Splatting 实现了重大突破,成功解决了长期以来困扰该领域的效率与质量平衡问题。传统的实时渲染技术在处理复杂场景时,往往难以在保证渲染质量的同时维持较高的帧率。而 3D Gaussian Splatting 通过其高效的算法和独特的场景表示方式,实现了实时辐射场渲染,能够在 1080p 分辨率下以 30fps 的速度进行高质量的新视图合成。
在一些实时互动的 3D 游戏场景中,玩家需要在虚拟环境中自由移动,观察周围的场景。3D Gaussian Splatting 技术能够快速地根据玩家的视角变化,实时渲染出新的视图。在一个大型的开放世界游戏中,玩家从森林中穿梭到城堡前,3D Gaussian Splatting 能够在短时间内准确地渲染出城堡的外观、纹理以及周围环境的光影效果,帧率稳定在 30fps,让玩家感受到流畅的视觉体验。在虚拟现实(VR)和增强现实(AR)的实时应用中,3D Gaussian Splatting 同样发挥着重要作用。在 VR 的沉浸式体验中,用户需要实时与虚拟环境进行交互,任何渲染延迟都可能导致用户产生眩晕感。3D Gaussian Splatting 能够快速渲染出高质量的虚拟场景,使得用户在 VR 设备中能够自由地转动头部、移动身体,实时看到周围场景的变化,仿佛身临其境。
(二)虚拟现实和增强现实
在虚拟现实(VR)和增强现实(AR)领域,3D Gaussian Splatting 技术的应用显著提高了环境的沉浸感。在 VR 体验中,用户期望能够完全沉浸在虚拟环境中,与周围的虚拟物体进行自然交互。3D Gaussian Splatting 通过快速生成高质量的 3D 场景,为用户呈现出逼真的虚拟环境。在一款 VR 游戏中,玩家可以身临其境地感受到虚拟战场的紧张氛围,周围的建筑、地形、武器等物体都通过 3D Gaussian Splatting 技术渲染得栩栩如生,玩家的每一个动作都能实时反馈在场景中,大大增强了游戏的沉浸感和趣味性。
在 AR 应用中,3D Gaussian Splatting 技术能够将虚拟物体与真实场景进行更自然的融合。在 AR 导航应用中,通过 3D Gaussian Splatting 技术,可以将虚拟的导航指示箭头、路线等信息以逼真的效果叠加在真实的街道场景中,让用户能够清晰地看到导航信息,仿佛这些信息就是真实存在于现实世界中的一部分。这种技术还能够提高 AR 场景的实时更新速度,当用户移动位置或视角发生变化时,虚拟物体能够快速、准确地重新渲染,与真实场景保持一致,避免出现卡顿或延迟现象,为用户提供更加流畅、自然的 AR 体验。
(三)电影和动画
在电影和动画制作中,3D Gaussian Splatting 为创建高级视觉效果提供了强大的支持。电影和动画制作需要构建各种复杂的虚拟场景和角色,对视觉效果的质量要求极高。3D Gaussian Splatting 技术能够实现高质量的 3D 场景重建和渲染,为电影和动画制作带来了更多的创意可能性。
在一些科幻电影中,需要呈现出奇幻的外星世界、宏大的宇宙场景等。3D Gaussian Splatting 技术可以根据导演的创意,快速构建出逼真的虚拟场景,包括星球的地貌、大气层的效果、宇宙飞船的细节等。在动画制作中,对于角色的建模和渲染也提出了很高的要求。3D Gaussian Splatting 能够精确地还原角色的外貌、表情和动作,使得角色更加生动、逼真。通过调整高斯函数的参数,可以实现对角色皮肤材质、光影效果的精细控制,让角色在不同的光照条件下都能呈现出自然的效果。
(四)自动驾驶
在自动驾驶领域,3D Gaussian Splatting 对改善机器人和自主系统的空间感知能力起到了重要作用。自动驾驶车辆需要实时感知周围的环境信息,包括道路、障碍物、其他车辆等,以便做出准确的决策。3D Gaussian Splatting 技术可以通过对传感器数据的处理,快速构建出周围环境的 3D 模型,为自动驾驶系统提供更准确、全面的空间信息。
在自动驾驶车辆行驶过程中,激光雷达等传感器会不断采集周围环境的数据。3D Gaussian Splatting 技术能够将这些数据转化为 3D 场景模型,通过对高斯函数的参数调整,可以准确地表示出不同物体的形状、位置和距离。在遇到前方有障碍物时,3D Gaussian Splatting 构建的 3D 模型能够清晰地显示出障碍物的轮廓和位置,自动驾驶系统可以根据这些信息及时做出避让或减速等决策,提高了自动驾驶的安全性和可靠性。 3D Gaussian Splatting 还可以与其他感知技术相结合,进一步提升自动驾驶系统的性能。与视觉传感器结合,可以利用 3D Gaussian Splatting 技术对视觉图像进行处理,实现对道路标志、交通信号灯等的更准确识别,为自动驾驶提供更丰富的信息。
五、前沿进展追踪
3D Gaussian Splatting 作为当下计算机图形学领域的热门技术,正不断推动着各个相关领域的发展与创新。在前沿研究中,众多学者和研究团队积极探索其更多的可能性,取得了一系列令人瞩目的成果。
(一)与深度学习的融合创新
深度学习在计算机视觉领域展现出了强大的能力,3D Gaussian Splatting 与深度学习的融合成为了前沿研究的一个重要方向。一些研究团队尝试将深度学习的方法应用于 3D Gaussian Splatting 的训练过程中,以进一步提高场景重建的精度和效率。通过引入神经网络来预测高斯函数的参数,能够更好地利用图像数据中的语义信息和上下文信息,从而实现更准确的场景表示。在一个针对复杂室内场景的研究中,利用深度学习模型对图像中的物体进行分类和识别,然后根据物体的类别和特征,为表示这些物体的高斯函数分配更合适的参数,使得重建后的场景在几何形状和语义理解上都更加准确。这种融合还可以应用于动态场景的重建,通过对视频序列的深度学习分析,实时调整高斯函数的参数,以适应场景中物体的运动和变化。
(二)多模态数据融合的新探索
为了获取更全面、准确的 3D 场景信息,多模态数据融合成为了 3D Gaussian Splatting 研究的另一个热点。激光雷达、相机等多种传感器可以提供不同类型的信息,将这些信息融合起来用于 3D 场景重建,能够充分发挥各种传感器的优势。将激光雷达获取的深度信息与相机拍摄的彩色图像相结合,利用 3D Gaussian Splatting 技术进行场景重建。激光雷达的深度信息可以精确地确定场景中物体的位置和形状,而相机的彩色图像则为场景增添了丰富的纹理和颜色信息。通过巧妙地融合这两种数据,能够构建出更加逼真、详细的 3D 场景模型。在自动驾驶领域,这种多模态数据融合的 3D Gaussian Splatting 技术可以为车辆提供更准确的环境感知,帮助车辆更好地理解周围的道路、障碍物和其他车辆的情况,从而提高自动驾驶的安全性和可靠性。
(三)在大规模场景重建中的优化
在面对大规模场景重建时,3D Gaussian Splatting 技术也在不断优化以应对挑战。为了提高处理大规模场景时的效率和内存利用率,研究人员提出了一系列创新的方法。采用分层的高斯表示策略,将大规模场景划分为不同层次的子场景,每个子场景用不同精度的高斯函数来表示。对于场景中的关键区域和重要物体,使用高精度的高斯函数进行详细表示;而对于一些相对次要的区域,则采用低精度的高斯函数,以减少计算量和内存占用。还可以结合分布式计算技术,将大规模场景的重建任务分配到多个计算节点上并行处理,大大加快了重建速度。在城市级别的 3D 场景重建中,通过这些优化方法,3D Gaussian Splatting 技术能够高效地处理海量的数据,快速构建出整个城市的高精度 3D 模型,为城市规划、智能交通等领域提供有力的支持。
(四)实时动态场景重建的突破
实时动态场景重建一直是计算机图形学领域的一个难题,3D Gaussian Splatting 技术在这方面也取得了重要的突破。传统的 3D 场景重建方法往往难以实时处理动态变化的场景,而 3D Gaussian Splatting 通过对高斯函数参数的实时更新和优化,能够实现对动态场景的快速重建。在一个实时体育赛事的转播中,利用多个相机对赛场进行拍摄,3D Gaussian Splatting 技术可以实时地将运动员的动作、姿态以及赛场的动态变化重建为 3D 场景,观众可以通过虚拟现实设备实时观看逼真的 3D 赛事画面,仿佛置身于赛场之中。这种实时动态场景重建的能力,为虚拟现实直播、增强现实交互等新兴应用提供了更广阔的发展空间。
六、未来展望:发展方向与挑战
(一)场景表示优化
在未来,进一步优化 3D 高斯函数的场景表示,以提高渲染质量和效率是 3D Gaussian Splatting 技术发展的重要方向之一。从理论基础的深入研究来看,目前 3D 高斯函数虽然已经在场景表示中展现出了独特的优势,但仍有改进的空间。研究人员可以深入探索高斯函数的数学特性,尝试开发新的参数化方式,以更精确地描述复杂场景中的几何形状和光照效果。在表示具有复杂拓扑结构的物体时,现有的高斯函数参数化可能无法完全捕捉到物体的细节特征,通过引入更灵活的参数化方法,如基于局部坐标系的参数化,能够更好地适应物体的形状变化,从而提高场景表示的准确性。
在优化过程中,提高计算效率也是关键。随着场景复杂度的增加,大量高斯函数的计算会带来巨大的计算负担。为了解决这个问题,可以采用并行计算技术,将高斯函数的计算任务分配到多个计算核心上同时进行处理。利用 GPU 的并行计算能力,通过编写高效的 CUDA 代码,实现对高斯函数的并行渲染和优化,能够显著提高计算速度。还可以研究更高效的算法,减少不必要的计算步骤。在计算高斯函数对像素点的贡献时,采用快速近似算法,在保证一定精度的前提下,快速计算出近似的贡献值,从而提高渲染效率。
从实际应用的角度出发,场景表示优化还需要考虑与其他相关技术的融合。将 3D 高斯函数与深度学习中的语义分割技术相结合,在重建场景时,利用语义分割的结果为不同的物体或区域分配更合适的高斯函数参数,能够使场景表示更加符合实际的语义理解。在重建一个室内场景时,通过语义分割识别出家具、墙壁、地板等不同的物体类别,然后根据每个类别的特点,为表示它们的高斯函数设置不同的参数,如颜色、透明度和形状等,从而实现更真实、更具语义意义的场景表示。
(二)动态场景拓展
将 3D Gaussian Splatting 技术扩展到动态场景和实时变化的视点及场景元素,是其面临的又一重大挑战,同时也蕴含着巨大的发展潜力。在动态场景中,物体的位置、形状和外观会随时间不断变化,这对 3D Gaussian Splatting 技术的实时性和适应性提出了极高的要求。
从技术挑战的角度来看,首先,如何实时更新高斯函数的参数以适应物体的动态变化是一个关键问题。在一个实时的体育赛事直播场景中,运动员的动作不断变化,场景中的光影也随着时间和运动员的移动而改变。为了准确地重建和渲染这样的动态场景,需要能够快速捕捉到物体的动态信息,并及时更新表示物体的高斯函数的位置、形状、颜色等参数。这就需要开发高效的动态跟踪算法,结合传感器数据(如摄像头的视频流、深度传感器数据等),实时监测物体的运动状态,然后根据运动信息快速调整高斯函数的参数。
处理动态场景中的遮挡和碰撞问题也是一大挑战。当多个物体在场景中运动时,会出现相互遮挡和碰撞的情况。在 3D Gaussian Splatting 中,需要准确地处理这些遮挡和碰撞关系,以保证渲染结果的真实性。当一个物体被另一个物体遮挡时,需要正确地计算出遮挡区域,避免被遮挡的高斯函数对渲染结果产生错误的影响。在处理碰撞问题时,需要考虑物体碰撞后的变形和运动变化,相应地调整高斯函数的参数。
针对这些挑战,目前已经有一些解决思路和研究方向。在算法层面,可以采用基于时间序列的优化方法,将时间维度纳入到高斯函数的优化过程中。通过对连续时间帧的分析,建立物体运动的模型,然后根据模型预测物体在下一时刻的状态,提前调整高斯函数的参数,以实现更流畅的动态场景重建。在数据处理方面,结合多源传感器数据可以提高对动态场景的感知能力。将激光雷达的深度数据与摄像头的视觉数据进行融合,利用激光雷达能够准确获取物体距离信息的优势,以及摄像头能够提供丰富颜色和纹理信息的特点,更全面地捕捉物体的动态变化,为高斯函数的参数更新提供更准确的数据支持。还可以探索基于深度学习的方法,利用神经网络对动态场景中的复杂模式进行学习和预测,从而实现对高斯函数参数的智能调整。
七、实践指南:上手 3D Gaussian Splatting
对于想要尝试 3D Gaussian Splatting 的读者,这里提供一些简单的实践步骤和相关资源。
工具准备
硬件要求:由于 3D Gaussian Splatting 涉及到大量的计算,推荐使用配备 NVIDIA GPU 的计算机,以加速计算过程。GPU 的计算能力越强,训练和渲染的速度就越快。例如,NVIDIA RTX 30 系列或更高版本的显卡能够提供较好的性能支持。
软件环境:
Python:确保安装了 Python 3.8 及以上版本,Python 作为主要的编程语言,许多相关的工具和库都依赖于 Python 环境。
相关库:需要安装 PyTorch、CUDA 等深度学习和计算加速库。PyTorch 是一个广泛应用于深度学习的框架,3D Gaussian Splatting 的许多实现都基于 PyTorch。CUDA 则是 NVIDIA 推出的并行计算平台和编程模型,能够利用 GPU 的并行计算能力加速计算过程。安装时,要根据自己的 GPU 型号和 CUDA 版本选择合适的 PyTorch 版本。可以通过以下命令安装:
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 -f https://download.pytorch.org/whl/torch_stable.html
还需要安装一些其他的依赖库,如 plyfile、tqdm 等,可以使用 pip 命令进行安装:
pip install plyfile tqdm
数据集:可以使用公开的数据集,如 Tanks and Temples、ETH3D 等,这些数据集包含了丰富的 3D 场景数据,为研究和实践提供了便利。也可以自己采集数据,使用相机拍摄一系列不同角度的照片,然后通过工具将这些照片转换为 3D 场景重建所需的格式。
代码示例
获取代码:可以从官方 GitHub 仓库(https://github.com/graphdeco-inria/gaussian-splatting)下载 3D Gaussian Splatting 的源代码。在下载代码之前,确保已经安装了 Git 工具,然后在命令行中执行以下命令:
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive
这里的--recursive
参数用于递归地下载所有子模块,确保代码的完整性。
2. 数据预处理:以从视频中提取帧并生成点云为例,假设已经将视频文件放在data
目录下,并且在data
目录中创建了input
文件夹用于保存提取的帧。可以使用 FFmpeg 工具来提取视频帧,执行以下命令:
ffmpeg -i data/input.mp4 -vf "setpts=0.2*PTS" data/input/input_%4d.jpg
这个命令会将视频以原速度的 20% 播放,并将提取的帧保存为 JPEG 格式的图片,图片命名为input_0001.jpg
、input_0002.jpg
等。
接下来,使用convert.py
文件将图片转换为点云。在命令行中执行以下命令:
python convert.py -s data
这里的-s
参数指定数据目录为data
。如果在执行过程中遇到问题,如缺少依赖库等,需要根据错误提示进行相应的处理。
3. 训练过程:运行训练脚本train.py
来训练模型。在命令行中执行以下命令:
python train.py -s data -m data/output
其中,-s
参数指定输入数据目录为data
,-m
参数指定输出模型的目录为data/output
。训练过程中,模型会不断优化 3D 高斯函数的参数,以提高渲染效果。训练过程的时间和计算资源消耗取决于数据集的大小和复杂度,以及硬件配置。在训练过程中,可以通过观察训练日志来了解模型的训练进度和性能指标。
4. 渲染与可视化:训练完成后,可以使用训练好的模型进行渲染和可视化。假设训练好的模型保存在data/output
目录中,可以使用SIBR_gaussianViewer_app
工具来查看渲染结果。在命令行中执行以下命令:
./SIBR_viewers/install/bin/SIBR_gaussianViewer_app -m data/output
这里的-m
参数指定模型的目录为data/output
。执行命令后,会弹出一个可视化窗口,展示渲染后的 3D 场景。在可视化窗口中,可以使用鼠标和键盘操作来调整视角,观察场景的不同部分。
结语
3D Gaussian Splatting 技术作为 3D 场景重建与渲染领域的创新力量,以其独特的高斯函数表示和 Splatting 技术,为我们带来了高效、灵活且高质量的 3D 场景构建与渲染体验。从原理上的巧妙设计,到训练与渲染过程的精细优化,再到在众多领域的广泛应用,它都展现出了巨大的优势和潜力。
在实时渲染、虚拟现实、电影动画、自动驾驶等领域,3D Gaussian Splatting 正发挥着越来越重要的作用,推动着这些领域不断向前发展。尽管它目前还面临着一些挑战,如场景表示的进一步优化、动态场景的拓展等,但随着研究的不断深入和技术的持续创新,相信这些问题都将逐步得到解决。
对于广大计算机图形学爱好者、研究者和开发者来说,3D Gaussian Splatting 无疑是一个极具吸引力的研究方向和工具。它为我们打开了一扇通往更逼真、更高效 3D 世界的大门,期待大家能够积极关注和探索这一技术,共同推动其在更多领域的应用和发展,创造出更加精彩的数字世界。