YOLOv8模型转换pt->onnx(附上代码)

本文介绍了如何在Python环境中使用Ultralytics库将YOLOv8的pt模型文件转换为ONNX格式,以便于在fastdeploy部署。步骤包括安装Ultralytics、加载模型(官方或自定义)、并导出为ONNX格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者在用fastdeploy部署YOLOv8模型时要将pt文件转换成onnx

于是可以在官方文件中找到对应方法链接:Export - Ultralytics YOLOv8 Docs

笔者在创建的虚拟环境中安装ultralytics

命令行为

pip install ultralytics

 然后笔者新创建了python文件,其中代码示例如下

from ultralytics import YOLO

# 加载模型
model = YOLO('yolov8n.pt')  # 加载官方模型(示例)
model = YOLO('D:/Web page download/best2.pt')  # 加载自定义训练模型(示例)

# 导出模型
model.export(format='onnx')

 注意自己训练好的pt文件的地址加载的官方模型

最后就可以在对应文件夹下面找到转换成功的onnx文件

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值