机械臂学习:视觉引导——绪论

一、视觉引导概述

(一) 什么是视觉引导?视觉引导应用案例

(二) 视觉引导原理简介

视觉引导 = 定位 + 引导

定位:视觉系统定位到待引导的物体

引导:视觉系统引导机械臂按需要的轨迹实现一定的工艺流程

二、视觉引导中的空间描述和变换

(一) 位置、姿态、坐标系的描述

(二) 齐次变换矩阵

(变换映射:指的是坐标系的变换 变换算子:同一坐标系下点的变换)

(三) 视觉引导中的空间描述和变换

三、视觉引导常用定位和引导方法介绍

(一) 视觉引导常用定位和引导方法介绍

四、仿真实例:基于点云的视觉引导系统

(一) 仿真实例:基于点云方式的视觉引导系统

(过度点:人为指定机械臂的轨迹防止碰撞)

(点云匹配:解决位姿估计姿态估计的问题)

无序抓取的三个核心技术:3d识别(图中的点云匹配) 抓取方法路径规划(防止机械臂的碰撞,如自身碰撞等)

如果只有同一高度的平移和旋转,其实并不需要点云,用单目就可以做,但是如果涉及到物体的倾斜以及高度的变换,那就是单目力所不能及,所以就是第三种情况:平移旋转加垫高

(二) 真实环境:基于点云方式的视觉引导系统

### 使用OpenCV实现视觉引导 #### 定义视觉引导的概念 视觉引导是指利用计算机视觉技术来指导机器人或其他自动化设备完成特定任务的过程。这通常涉及目标检测、跟踪以及路径规划等功能。 #### 实现方法 对于使用OpenCV进行视觉引导的应用开发而言,主要步骤包括但不限于: - **环境搭建** 需要先确保已经正确配置好了C++或Python的编程环境,并成功安装了OpenCV库[^1]。如果选择的是Python,则可以按照如下方式安装`opencv-python`包: ```bash pip install opencv-python ``` - **读取并预处理图像数据** 获取摄像头输入或者加载本地图片作为待处理的数据源。接着可能还需要做一些诸如灰度化转换、噪声去除之类的预处理工作以便后续操作更加顺利。 ```python import cv2 def preprocess_image(image_path): img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) # 加载为灰色模式 blurred_img = cv2.GaussianBlur(img, (5, 5), 0) # 应用高斯模糊减少噪音 return blurred_img ``` - **特征提取与匹配** 利用SIFT/SURF/ORB等算法从场景中找到具有代表性的关键点及其描述符,再通过FLANN或BFMatcher等方式寻找最佳配对关系从而确定物体位置变化情况。 ```python orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(trainImage, None) kp2, des2 = orb.detectAndCompute(queryImage, None) bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(des1,des2) matches = sorted(matches, key=lambda x:x.distance) ``` - **计算位姿变换矩阵** 当已知两组对应的关键点坐标时,就可以借助于PnP问题求解器得到相机相对于被观测对象的姿态参数(旋转和平移向量)。这部分涉及到较为复杂的几何运算,在此仅给出简化版伪代码示意: ```python retval, rvec, tvec = cv2.solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, flags]]]]) ``` - **绘制辅助线指示方向** 基于上述获得的信息可以在原图上画出箭头或者其他图形帮助理解当前状态下的运动趋势。 ```python cv2.arrowedLine(frame,(int(x_start), int(y_start)),(int(x_end), int(y_end)),color=(0,255,0)) ``` 以上就是关于怎样运用OpenCV开展视觉导航工作的基本流程介绍[^2]。值得注意的是具体实施过程中还需考虑很多细节因素比如光照条件影响、遮挡物干扰等问题都需要妥善解决才能达到理想效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值