矩阵(线性代数)

向量的内积和模

        一个向量的内积为0,说明这个向量为零向量。

标准正交向量组

矩阵公式大总结 

 逆矩阵、伴随矩阵、倒置矩阵的联系

用伴随矩阵求逆矩阵(二阶公式 )

对角线分块矩阵的求逆 

 

三角分块矩阵求逆 

 

矩阵的计算公式 

详情请跳转 

矩阵乘积可以用交换律的情况 

矩阵的计算题型 

矩阵A的n次幂

 

行矩阵乘列矩阵为数,列矩阵乘行矩阵为矩阵 

 

矩阵为方阵且秩为1(秩1矩阵的性质) 

       

        1、秩为1的矩阵转化为列向量x行向量的方法:把方阵的第一列作为基底,作为列向量,再写出方阵每一列跟这个基底的比例关系。


        2、秩为1的矩阵,其拆出来的列向量与行向量的计算式:


        3、秩1矩阵高次幂的计算:


        4、秩1矩阵的特征值与特征性质

        因为特征值的数量与矩阵列数n相关,所以n阶矩阵就有n个特征值

        (1)特征值为0时,其特征向量有n-1个,其特征向量的线性相关性跳转链接:k重特征值的特征向量关系



        5、相似对角化

递推法求A的n次幂 

先试算出A的2次幂或A的3次幂

将矩阵可拆后, 二次项展开

逆矩阵的求证 

用定义法求矩阵是否可逆 

将矩阵A分解成若干可逆矩阵乘积

用伴随矩阵求逆矩阵(有数值的矩阵) 

用初等行变换求逆矩阵 

初等矩阵变换 

初等矩阵变换的详解

矩阵方程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值