向量的内积和模
一个向量的内积为0,说明这个向量为零向量。
标准正交向量组
矩阵公式大总结
逆矩阵、伴随矩阵、倒置矩阵的联系
用伴随矩阵求逆矩阵(二阶公式 )
对角线分块矩阵的求逆
三角分块矩阵求逆
矩阵的计算公式
矩阵乘积可以用交换律的情况
矩阵的计算题型
矩阵A的n次幂
行矩阵乘列矩阵为数,列矩阵乘行矩阵为矩阵
矩阵为方阵且秩为1(秩1矩阵的性质)
1、秩为1的矩阵转化为列向量x行向量的方法:把方阵的第一列作为基底,作为列向量,再写出方阵每一列跟这个基底的比例关系。
2、秩为1的矩阵,其拆出来的列向量与行向量的计算式:
3、秩1矩阵高次幂的计算:
4、秩1矩阵的特征值与特征性质因为特征值的数量与矩阵列数n相关,所以n阶矩阵就有n个特征值
(1)特征值为0时,其特征向量有n-1个,其特征向量的线性相关性跳转链接:k重特征值的特征向量关系
5、相似对角化
递推法求A的n次幂
先试算出A的2次幂或A的3次幂