2024最新算法:美洲狮优化算法(Puma Optimizar Algorithm ,POA)求解23个基准函数(提供MATLAB代码)

一、美洲狮优化算法

美洲狮优化算法(Puma Optimizar Algorithm ,POA)由Benyamin Abdollahzadeh等人于2024年提出,其灵感来自美洲狮的智慧和生活。在该算法中,在探索和开发的每个阶段都提出了独特而强大的机制,这提高了算法对各种优化问题的性能。此外,该算法还提出了一种新型的智能机制,即相变的超启发式机制(PI),使用这种机制,PO算法可以在优化操作期间执行相变操作,并平衡探索和开发,同时探索和开发都会根据问题的性质自动调整。

参考文献:

[1]Abdollahzadeh, B., Khodadadi, N., Barshandeh, S. et al. Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Comput (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning | Cluster Computing

二、23个函数介绍

参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、POA求解23个函数

3.1部分代码

close all ;
clear
clc
Npop=30;                
Function_name='F1';     % Name of the test function that can be from F1 to F23 ( 
Tmax=300;              
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_fit,Best_pos,Convergence_curve]=POA(Npop,Tmax,lb,ub,dim,fobj);
figure('Position',[100 100 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',3)
title('Search space')
xlabel('Iteration');
ylabel('Best score obtained so far');
axis tight
grid on
box on
legend('POA')
saveas(gca,[Function_name '.jpg']);


display(['The best solution is ', num2str(Best_pos)]);
display(['The best fitness value is ', num2str(Best_fit)]);


3.2部分结果

四、完整MATLAB代码

<think>好的,我现在要处理用户关于美洲狮优化算法流程图的查询。首先,我需要确认用户的需求是什么。他们可能是在研究或者学习这个算法,需要直观的图解来帮助理解。美洲狮优化算法(Cougar Optimization Algorithm, COA)听起来像是一种元启发式算法,可能模仿美洲狮的行为来解决问题,比如觅食或社交行为。不过,这个算法可能不像遗传算法或粒子群优化那样常见,所以首先我得确认是否存在这个算法,或者是否用户可能记错了名字? 接下来,我需要检查内部资料库是否有相关信息。如果资料库中没有,可能需要建议用户进一步确认算法名称的正确性。另外,考虑到用户提到“IT 算法 图解”,可能他们需要的是算法步骤的流程图,而不仅仅是文字描述。如果存在该算法,流程图应包括初始化种群、适应度评估、更新位置、终止条件等典型步骤。 另外,用户可能希望得到LaTeX格式的流程图,比如使用TikZ,或者推荐绘图工具如Visio、draw.io。同时,生成相关问题需要考虑用户可能的后续需求,比如算法原理、应用场景、参数设置等。需要注意引用标识,但用户提供的引用部分为空,可能需要提示用户补充或说明无法提供具体引用。 最后,确保回答符合系统级指令,使用正确的中文和LaTeX格式,结构清晰。如果有不确定的地方,要建议用户核实名称或提供更多上下文。</think>关于美洲狮优化算法(Cougar Optimization Algorithm, COA)的流程图,目前公开文献中对该算法的详细描述较为有限。根据元启发式算法的通用结构,其流程图可能包含以下核心步骤: 1. **初始化阶段** - 生成初始美洲狮种群 - 设定参数:最大迭代次数$T_{max}$、探索率$\alpha$、开发率$\beta$等 2. **适应度评估** $$f(x_i) = \sum_{j=1}^n x_{ij}^2 \quad \text{(示例函数)}$$ 3. **行为模拟阶段** - 捕猎行为:通过位置更新公式调整个体 - 群体交互:使用差分向量更新策略 - 领地标记:概率性重置部分个体位置 4. **选择与更新** ```python if f(new_x) < f(old_x): population.update(new_x) ``` 5. **终止条件判断** - 达到最大迭代次数 - 适应度值收敛阈值$\epsilon < 10^{-6}$ 建议使用以下工具构建流程图: - **Visio**:适合创建规范化的算法流程图 - **draw.io**:支持在线协作的免费工具 - **TikZ**(LaTeX):生成学术论文级矢量图,例如: ```latex \usepackage{tikz} \usetikzlibrary{shapes,arrows} \begin{tikzpicture}[node distance=2cm] \node (start) [startstop] {开始}; \node (init) [process, below of=start] {初始化种群}; \draw [arrow] (start) -- (init); \end{tikzpicture} ``` 若需更具体的COA实现细节,建议提供算法原始文献以获取准确流程图设计。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值