特征提取神操作,登上Nature!计算速度狂提300%!

特征提取新突破,登上Nature!作者提出CVOCA,一种能同时处理数据的幅度和相位信息的卷积模型,在性能远超SOTA的同时,计算速度更是狂飙300%!

实际上,作为机器学习和深度学习的核心技术,特征提取一直都是研究的热门!它直接影响着模型的准确性、计算效率、可解释性……

同时,它也是我们改模型涨点,最好操作的部分!因为可切入点的真的非常之丰富,不管是轻量化、多尺度、时域与频域结合等,都能使模型性能得到提升!加之,Mamba、KAN等新技术的发展,以及何恺明大佬对扩散模型做特征提取器的探讨,更是给我们的论文创新提供了机会。

目前动态特征提取、跨学科交叉、自动化特征工程、与自监督学习结合、跨模态都是好出创新的方向。为方便大家研究的进行,我也给大家准备了25种前沿特征提取方法,一起来看!

论文原文+开源代码需要的同学看文末

Transformer-Based No-Reference Image Quality Assessment via Supervised Contrastive Learning

内容:这篇文章提出了一种基于监督对比学习(SCL)和Transformer的无参考图像质量评估(NR-IQA)模型SaTQA。该模型首先利用大规模合成数据集通过SCL训练,无需图像主观评分即可提取各种失真类型和程度的图像退化特征。接着,作者设计了一个结合CNN归纳偏差和Transformer长期依赖建模能力的多流块(MSB)作为骨干网络,进一步提取图像的失真信息。最后,通过提出的Patch Attention Block(PAB)将对比学习学到的退化特征与骨干网络提取的感知失真信息融合,得到最终的失真图像质量评分。实验结果表明,SaTQA在六个标准IQA数据集上均优于现有最先进的方法,无论是合成数据集还是真实数据集。

Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed

内容:本文提出了一种名为Efficient LoFTR的新型图像匹配方法,旨在高效地生成半密集图像匹配点。该方法对LoFTR进行了改进,通过引入聚合注意力机制和自适应标记选择来提高效率,并设计了两阶段相关层以提高匹配精度。实验表明,Efficient LoFTR的效率比LoFTR提高了约2.5倍,甚至超过了当前最先进的稀疏匹配流程SuperPoint + LightGlue,同时在多个任务上实现了更高的匹配精度,为大规模或延迟敏感的应用(如图像检索和三维重建)提供了新的可能性。

TOPS-speed complex-valued convolutional  accelerator for feature extraction and  inference

内容:本文介绍了一种基于光学的复值卷积加速器(CVOCA),其计算速度超过2万亿次运算每秒(TOPS),用于特征提取和推理任务。该加速器利用光学神经形态硬件,能够高效处理复值数据,特别是处理合成孔径雷达(SAR)图像等复杂的波相关数据。实验中,该系统在处理500张SAR图像时达到了83.8%的准确率,接近计算机模拟的结果。这一成果不仅展示了光学计算在处理高维、复杂数据方面的潜力,还为实时、高维数据分析提供了新的硬件解决方案,有望在通信、雷达和卫星成像等领域得到广泛应用。

MLP-KAN: UNIFYING DEEP REPRESENTATION AND  FUNCTION LEARNING

内容:本文提出了一种名为MLP-KAN的新型统一方法,将深度表示学习和函数学习相结合。该方法通过在混合专家(MoE)架构中整合多层感知机(MLP)和Kolmogorov-Arnold网络(KAN),动态适应不同任务的特性,从而在无需手动选择模型的情况下实现最优性能。MLP-KAN嵌入在基于Transformer的框架中,在计算机视觉、自然语言处理和符号公式表示等多个领域的四个常用数据集上取得了显著的实验结果。广泛的实验评估表明,MLP-KAN在深度表示和函数学习任务中均具有卓越的通用性和竞争力,简化了模型选择过程,为各种领域提供了全面且灵活的解决方案。

Exploring State Space Model in Wavelet Domain:  An Infrared and Visible Image Fusion Network via  Wavelet Transform and State Space Model

内容:本文提出了一种名为W-Mamba的新型红外与可见光图像融合网络,该网络通过结合小波变换和状态空间模型(SSM),有效整合了频率域特征和全局语义信息,以解决现有方法在跨模态全局特征提取不足和局部纹理细节保留不足的问题。W-Mamba引入了Wavelet-SSM模块,用于提取频率域中的全局和局部特征,并设计了跨模态特征注意力调制模块,以促进不同模态间的高效交互和融合。实验结果表明,该方法在视觉效果和性能上均优于当前最先进的方法。

码字不易,欢迎大家点赞评论收藏!

关注下方《AI科研技术派》

回复【25特取】获取完整论文

👇

餐饮行业: 店外引流:在餐厅门口放置爆店码,顾客进店前碰一碰,就能了解今日特色菜品、优惠套餐等信息,吸引顾客进店消费。 店内互动:在餐桌等位置设置爆店码,顾客用餐过程中碰一碰,可参与抽奖活动、领取餐后优惠券,或跳转到电子菜单进行加菜,增加顾客的用餐乐趣和二次消费几率。 零售店铺: 服装门店:在橱窗展示新品时,贴上爆店码,顾客碰一碰可查看模特穿搭视频、获取商品详情和尺码信息,以及该商品的会员专属折扣。在试衣镜旁放置爆店码,顾客碰一碰能查看搭配建议、关注公众号或加入会员,升引流转粉效率。 便利店:在收银台设置爆店码,顾客付款时碰一碰,可领取满减优惠券、了解会员积分规则,或获取当季新品推荐,促进顾客当场购买或成为会员,升销售额和顾客忠诚度。 线下活动: 展会:在展会入口、展位等位置放置爆店码,参与者碰一碰就能快速获取展会详情、参展商名单、活动议程、展位地图等信息,方便活动的推广和组织,同时也能收集参与者的信息,为后续营销做准备。 促销活动:在商场中庭、店铺门口等举办促销活动时,使用爆店码。顾客碰一碰可了解活动规则、参与方式,还能直接领取电子优惠券或参与线上互动游戏,增加活动的参与度和传播度。 服务行业: 美业:在美甲美睫店的服务台、镜子旁等地方设置爆店码,顾客碰一碰可自动引导添加美业小助理微信,方便预约下次服务,也可获取美容护肤知识、会员专属优惠等信息。 健身行业:在健身房的前台、更衣室门口、器械旁放置爆店码。顾客碰一碰能了解课程安排、教练介绍,还可参与打卡活动,分享训练成果到社交平台,领取健身优惠券或小礼品,吸引更多潜在顾客。 旅游行业: 景区:在景区入口、景点打卡处等设置爆店码,游客碰一碰可获取景区地图、景点介绍、语音讲解,还能领取景区纪念品优惠券或参与线上互动活动,升游客的旅游体验和景区的知名度。 酒店:在酒店大堂、客房门口、餐厅等位置放置爆店码。客人碰一碰可了解酒店
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值