TaskWeaver创建超级AI Agent

TaskWeaver是一个以代码为先的Agent框架,它通过LLM处理复杂的任务规划和执行,支持丰富的数据结构和定制算法。与现有框架不同,TaskWeaver具备有状态对话、代码验证和领域知识融合能力,提升了AI copilot的性能和可靠性。它的工作流程涉及规划器、代码生成器和执行器,通过规划、代码生成和执行来协调任务。TaskWeaver对比Autogen,提供了更强大的功能,如动态插件选择和代码验证,用于创建Super AI Agent。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    大语言模型(LLM),例如GPT、Claude、Palm和Llama等,在自然语言理解和生成方面展示了非凡的能力。这些模型已被广泛应用于各种应用中,包括聊天机器人、虚拟助手和内容生成系统。LLM有潜力彻底改变人类与机器的互动方式,提供更自然、更直观的体验。特别是那些利用大型语言模型(LLM)或其他人工智能技术的Agent,被视为具有规划任务、观察周围环境并相应执行适当行动的自主实体。几个现有的框架,包括Langchain、Semantic Kernel、Transformers Agent、Agents、AutoGen和JARVIS,已努力利用LLM进行面向任务的对话。这些框架使用户能够通过发出自然语言请求并接收回应来与LLM驱动的Agent进行交互。然而,这些框架存在限制,限制了它们在处理特定领域场景和数据分析任务时的有效性。

前言

    复杂Agent。现在各种应用方案都要蹭一下Agent的热度,其中大部分的实现仅是简单Agent,甚至是通过LLM prompt或RAG的方案实现的。这里期望实现的Agent能力要明显强于基座LLM的直接调用和各种工具的简单组合。复杂Agent的单次运行中可能涉及【至少】数十次、数百次的LLM API调用。在这个标准下,包括New Bing Chat在内的所有RAG方案都还不够“复杂”。 

    规划能力。从原理上来说,LLM的训练目标只是记住训练集中的经验,甚至只是其中共性的部分,而非所有细节。从LLM的模型结构上来说,也没有任何更适合于规划的结构设计。什么样的方式才算是规划呢?这里举个例子:最简单的规划问题抽象是应用数学中的各种规划问题(运筹问题),例如线性规划、混合整数线性规划、非线性规划。解决规划问题有几个要求:1.给出的方案是可行的。对于序列规划问题来说,从起点到终点的每步都要是可行的。2.将问题拆分为几个子问题时,应确保能从子问题的求解结果完整的得到原问题的解决方案。3.解决方案的成本是合适的,最好能有某种最优性或近似最优性,至少也得是成本可接受得。LLM与目前基于LLM的复杂Agent能够满足这些要求么?基本不行。

    AutoGPT、ChatDEV、AutoGEN 和 MetaGPT 是今年发布的一些Multi-Agent框架库。大多数现有框架的一个主要限制是缺乏处理丰富数据结构的原生支持。基于LLM的Agent经常需要处理复杂的数据结构,如嵌套列表、字典或数据框架,用于数据分析应用和许多其他商业场景。然而,许多现有框架在有效处理这些结构方面存在困难,特别是在将信息在聊天轮次之间或不同插件之间传输时。在这种情况下,这些框架要么将数据持久化到磁盘,要么将复杂结构编码为字符串或JSON对象作为提示。尽管这些方法是可行的,但它们可能导致不切实际和增加错误率,特别是在处理大型数据集时。 

    现有方法的另一个限制是缺乏配置以融入领域知识。虽然这些框架提供了提示工程的工具和示例,但它们未能提供一种系统化的方式将特定领域知识嵌入到规划和代码生成过程中。因此,这种限制使得在特定领域要求下控制规划和代码生成过程变得具有挑战性。 

    许多现有框架中遇到的另一个问题是它们的不灵活性,这阻碍了满足用户多样化需求的能力。虽然插件可以解决常见需求,但在处理特定查询时可能会不足。为每个特定查询编写单独的插件是不切实际的。在这些情况下,Agent能够编写自定义代码来执行用户查询变得必要。因此,有必要提出一种解决方案,无缝地将插件执行与自定义代码执行结合起来,以解决这个问题。 

    微软最近推出了TaskWeaver,是AutoGen的升级版本,用户仅用几条命令就将可以将想法转化为代码。TaskWeaver不仅仅是一个工具,更是一个复杂的系统,能够解释命令,将它们转换为代码,并精确地执行任务。 

    在这篇文章中,我们将讨论什么是 TaskWeaver,TaskWeaver 的特点是什么,Autogen 和 TaskWeaver 之间的区别,以及如何使用 TaskWeaver 创建一个超级 AI Agent,最后分析TaskWeaver的设计考量。

认识 TaskWeaver

    TaskWeaver 是一个以代码为先的Agent框架,用于无缝规划和执行Agent任务。这个创新框架通过编码片段解释用户请求,并有效地协调各种以函数形式存在的插件来执行各种任务。

创建一个AI agent人工智能代理)是一个复杂的过程,涉及到多个步骤和技术。以下是一个基本的创建AI agent的流程: 1. **定义目标和功能**: - 确定AI agent的目标和任务。例如,是用于客户服务、自然语言处理、图像识别还是其他用途。 - 确定AI agent需要具备的功能和特性。 2. **数据收集和预处理**: - 收集与任务相关的数据。这些数据可以是文本、图像、音频等。 - 对数据进行清洗和预处理,以确保数据的质量和一致性。 3. **选择模型和算法**: - 根据任务需求选择合适的机器学习深度学习模型。例如,使用卷积神经网络(CNN)进行图像识别,使用循环神经网络(RNN)或变体(如LSTM)进行自然语言处理。 - 确定使用的算法和框架,如TensorFlow、PyTorch、Keras等。 4. **训练模型**: - 使用收集到的数据进行模型训练。训练过程包括前向传播、损失计算、反向传播和参数更新。 - 调整超参数(如学习率、批量大小等)以优化模型性能。 5. **评估和优化**: - 使用验证集和测试集评估模型的性能。 - 根据评估结果对模型进行优化,如调整模型结构、增加数据量、使用正则化技术等。 6. **部署和集成**: - 将训练好的模型部署到服务器或云平台。 - 将AI agent集成到应用程序或其他系统中,确保其能够与用户或其他系统进行交互。 7. **监控和维护**: - 持续监控AI agent的性能和行为。 - 定期更新和优化模型,以应对新的数据和需求。 以下是一个简单的示例,展示如何使用Python和TensorFlow创建一个简单的AI agent: ```python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 定义模型 model = keras.Sequential([ layers.Dense(64, activation='relu', input_shape=(100,)), layers.Dense(64, activation='relu'), layers.Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 准备数据 import numpy as np data = np.random.random((1000, 100)) labels = np.random.randint(10, size=(1000, 1)) labels = keras.utils.to_categorical(labels, num_classes=10) # 训练模型 model.fit(data, labels, epochs=10, batch_size=32) # 评估模型 test_data = np.random.random((100, 100)) test_labels = np.random.randint(10, size=(100, 1)) test_labels = keras.utils.to_categorical(test_labels, num_classes=10) model.evaluate(test_data, test_labels) ``` 这个示例展示了一个简单的神经网络模型,用于分类任务。通过调整模型结构和超参数,可以优化模型性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值