在当今科学研究的前沿领域,机器学习(ML)与分子动力学(MD)的结合正逐渐成为探索复杂化学和物理现象的强大工具。机器学习,特别是深度学习,以其在处理大数据和识别模式方面的能力而闻名。而分子动力学模拟则提供了一种计算密集的方法,用于研究分子层面上的动态过程。将这两种技术结合起来,可以极大地推进我们对材料性质、分子行为的理解。
机器学习算法能够从大量的MD模拟数据中提取出关键特征和模式,从而预测分子行为和优化实验设计。反过来,MD模拟提供了精确的分子运动信息,这对于训练和验证ML模型至关重要。这种跨学科的融合不仅能够加速科学发现,还能够在材料科学等领域开辟新的研究路径。
内容
Day 1: 熟悉分子动力学基本常识
目标:
1. 掌握分子动力学基本原理
2. LAMMPS软件的安装
3. 掌握基本的计算流程
Day 1-1
1. 经典分子动力学模拟
l牛顿运动力学
2. 非平衡态分子动力学模拟
3. LAMMPS软件安装流程及势函数增加或删减 (Centos,Ubuntu版)
l安装相关程序包(gcc-g++,make, gcc-gfortran)
l安装fftw流程
l安装mpich流程
l配置环境变量
l安装Lammps(Makefile文件修改,安装势函数依赖包)
l测试Lmp_mpi文件
4. 可视化软件基本介绍(Ovito, VMD, MS, Vesta)
l可视化软件基本操作
l文件转换、data复制,切片等
l图片高质量输出
图1 分子动力学模拟和分析
Day 1-2
1. 输入数据库data文件
l数据文件基本格式(lmp,cif,xyz等)
l脚本撰写石墨烯data数据(Matlab编程)
lAtomsk编写金属、石墨烯等data数据
lMS直接获取数据data文件
lOvito修改data数据输出
l网页数据库、文献直接获取
2. 势函数文件
l势函数文件选取
l截断距离说明
l势函数获取手段
3. in文件命令的简单介绍
l驰豫命令讲解
lRestart文件输出说明
lNPT NVT NVE系综简单介绍
4. 实操石墨单轴拉伸
l建模
lIn文件详细解释(包括驰豫、拉伸&#x