机器学习分子动力学 LAMMPS软件安装流程

在当今科学研究的前沿领域,机器学习(ML)与分子动力学(MD)的结合正逐渐成为探索复杂化学和物理现象的强大工具。机器学习,特别是深度学习,以其在处理大数据和识别模式方面的能力而闻名。而分子动力学模拟则提供了一种计算密集的方法,用于研究分子层面上的动态过程。将这两种技术结合起来,可以极大地推进我们对材料性质、分子行为的理解。

机器学习算法能够从大量的MD模拟数据中提取出关键特征和模式,从而预测分子行为和优化实验设计。反过来,MD模拟提供了精确的分子运动信息,这对于训练和验证ML模型至关重要。这种跨学科的融合不仅能够加速科学发现,还能够在材料科学等领域开辟新的研究路径。

内容

Day 1: 熟悉分子动力学基本常识

目标:

1. 掌握分子动力学基本原理

2. LAMMPS软件的安装

3. 掌握基本的计算流程

Day 1-1

1. 经典分子动力学模拟

l牛顿运动力学

2. 非平衡态分子动力学模拟

3. LAMMPS软件安装流程及势函数增加或删减 (Centos,Ubuntu版)

l安装相关程序包(gcc-g++,make, gcc-gfortran)

l安装fftw流程

l安装mpich流程

l配置环境变量

l安装Lammps(Makefile文件修改,安装势函数依赖包)

l测试Lmp_mpi文件

4. 可视化软件基本介绍(Ovito, VMD, MS, Vesta)

l可视化软件基本操作

l文件转换、data复制,切片等

l图片高质量输出

图1 分子动力学模拟和分析

Day 1-2

1. 输入数据库data文件

l数据文件基本格式(lmp,cif,xyz等)

l脚本撰写石墨烯data数据(Matlab编程)

lAtomsk编写金属、石墨烯等data数据

lMS直接获取数据data文件

lOvito修改data数据输出

l网页数据库、文献直接获取

2. 势函数文件

l势函数文件选取

l截断距离说明

l势函数获取手段

3. in文件命令的简单介绍

l驰豫命令讲解

lRestart文件输出说明

lNPT NVT NVE系综简单介绍

4. 实操石墨单轴拉伸

l建模

lIn文件详细解释(包括驰豫、拉伸&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值