1. Lammps 安装-简单运行

本文详细介绍了如何在Windows操作系统上安装和运行LAMMPS,包括下载LAMMPS的64位Python版本和MPICH2以支持并行计算。在安装完成后,通过例子文件peptide演示了如何启动命令行并执行LAMMPS计算,展示了LAMMPS在分子动力学模拟中的输出信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从lammps官网下载windows版本的程序:https://packages.lammps.org/windows.html,在Installing LAMMPS on Windows 标题下点击“64-bit Windows download area”,下载程序,我下载的是“LAMMPS-64bit-Python-latest-MPI.exe”,双击程序即可安装。

后面说在windows上并行运算LAMMPS,需要安装MPICH2,点击官网“mpich2-1.4.1p1-win-x86-64.msi”,下载后双击即可安装。

在安装目录下有文件夹Examples,其中是运行案例,拷贝Examples/peptide文件夹到桌面,启动命令行,进入peptide文件夹,输入:lmp -pk omp 8 -sf omp -in in.peptide.lmp;

C:\Users\li\Desktop\peptide>lmp -pk omp 8 -sf omp -in in.peptide.lmp
LAMMPS (28 Mar 2023)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:98)
  using 1 OpenMP thread(s) per MPI task
Loaded 1 plugins from D:\software\lammps\LAMMPS 64-bit 28Mar2023-MPI with Python\plugins
set 8 OpenMP thread(s) per MPI task
using multi-threaded neighbor list subroutines
Reading data file ...
  orthogonal box = (36.840194 41.013691 29.768095) to (64.21156 68.385058 57.139462)
  1 by 1 by 1 MPI processor grid
  reading atoms ...
  2004 atoms
  reading velocities ...
  2004 velocities
  scanning bonds ...
  3 = max bonds/atom
  scanning angles ...
  6 = max angles/atom
  scanning dihedrals ...
  14 = max dihedrals/atom
  scanning impropers ...
  1 = max impropers/atom
  reading bonds ...
  1365 bonds
  reading angles ...
  786 angles
  reading dihedrals ...
  207 dihedrals
  reading impropers ...
  12 impropers
Finding 1-2 1-3 1-4 neighbors ...
  special bond factors lj:    0        0        0
  special bond factors coul:  0        0        0
     4 = max # of 1-2 neighbors
     7 = max # of 1-3 neighbors
    14 = max # of 1-4 neighbors
    18 = max # of special neighbors
  special bonds CPU = 0.005 seconds
  read_data CPU = 0.063 seconds
Finding SHAKE clusters ...
      19 = # of size 2 clusters
       6 = # of size 3 clusters
       3 = # of size 4 clusters
     640 = # of frozen angles
  find clusters CPU = 0.001 seconds
84 atoms in group peptide
PPPM initialization ...
  using 12-bit tables for long-range coulomb (src/kspace.cpp:342)
  G vector (1/distance) = 0.26872465
  grid = 15 15 15
  stencil order = 5
  estimated absolute RMS force accuracy = 0.022820853
  estimated relative force accuracy = 6.872432e-05
  using double precision FFTW3
  3d grid and FFT values/proc = 10648 3375
Generated 91 of 91 mixed pair_coeff terms from arithmetic mixing rule
Last active /omp style is kspace_style pppm/omp
Neighbor list info ...
  update: every = 1 steps, delay = 5 steps, check = yes
  max neighbors/atom: 2000, page size: 100000
  master list distance cutoff = 12
  ghost atom cutoff = 12
  binsize = 6, bins = 5 5 5
  1 neighbor lists, perpetual/occasional/extra = 1 0 0
  (1) pair lj/charmm/coul/long/omp, perpetual
      attributes: half, newton on, omp
      pair build: half/bin/newton/omp
      stencil: half/bin/3d
      bin: standard
Setting up Verlet run ...
  Unit style    : real
  Current step  : 0
  Time step     : 2
SHAKE stats (type/ave/delta/count) on step 0
Bond:    4   1.111     1.44264e-05        9
Bond:    6   0.996998  7.26967e-06        6
Bond:    8   1.08      1.32536e-05        7
Bond:   10   1.111     1.22749e-05        8
Bond:   12   1.08      1.11767e-05        9
Bond:   14   0.96      0                  1
Bond:   18   0.957206  4.37979e-05     1280
Angle:  31   104.519   0.00396029       640
Per MPI rank memory allocation (min/avg/max) = 22.54 | 22.54 | 22.54 Mbytes
------------ Step              0 ----- CPU =            0 (sec) -------------
TotEng   =     -5237.4580 KinEng   =      1134.9186 Temp     =       282.1005
PotEng   =     -6372.3766 E_bond   =        16.5572 E_angle  =        36.3726
E_dihed  =        15.5190 E_impro  =         1.9426 E_vdwl   =       692.8945
E_coul   =     26772.2646 E_long   =    -33907.9271 Press    =      -837.0112
------------ Step             50 ----- CPU =     0.192885 (sec) -------------
TotEng   =     -5247.5537 KinEng   =      1132.4000 Temp     =       281.4745
PotEng   =     -6379.9537 E_bond   =        12.2118 E_angle  =        31.7365
E_dihed  =        18.8145 E_impro  =         2.3611 E_vdwl   =       658.1785
E_coul   =     26804.4441 E_long   =    -33907.7003 Press    =     -1331.7946
SHAKE stats (type/ave/delta/count) on step 100
Bond:    4   1.111     7.80613e-07        9
Bond:    6   0.997     1.06181e-06        6
Bond:    8   1.08      6.20292e-07        7
Bond:   10   1.111     6.23284e-07        8
Bond:   12   1.08      2.67996e-07        9
Bond:   14   0.96      0                  1
Bond:   18   0.957201  5.3796e-06      1280
Angle:  31   104.52    0.000502278      640
------------ Step            100 ----- CPU =      0.39917 (sec) -------------
TotEng   =     -5257.9979 KinEng   =      1078.0553 Temp     =       267.9663
PotEng   =     -6336.0532 E_bond   =        14.4829 E_angle  =        43.4429
E_dihed  =        15.2569 E_impro  =         2.3160 E_vdwl   =       708.3273
E_coul   =     26786.6829 E_long   =    -33906.5621 Press    =      -648.6819
------------ Step            150 ----- CPU =     0.613116 (sec) -------------
TotEng   =     -5287.2799 KinEng   =      1098.6028 Temp     =       273.0737
PotEng   =     -6385.8827 E_bond   =        17.4925 E_angle  =        32.8594
E_dihed  =        15.1624 E_impro  =         1.6522 E_vdwl   =       736.9675
E_coul   =     26717.2655 E_long   =    -33907.2821 Press    =      -333.1830
SHAKE stats (type/ave/delta/count) on step 200
Bond:    4   1.111     2.18698e-07        9
Bond:    6   0.997     1.50562e-07        6
Bond:    8   1.08      6.57498e-08        7
Bond:   10   1.111     5.54188e-07        8
Bond:   12   1.08      1.98839e-07        9
Bond:   14   0.96      0                  1
Bond:   18   0.957201  3.59627e-06     1280
Angle:  31   104.52    0.000388336      640

命令解释:
-pk omp 8:使用多线程进行计算;
-sf omp:启用了多线程后,还必须在LAMMPS中选择启用了多线程的样式;
-in in.peptide.lmp:lammps的输入文件;

<think>嗯,用户想用Python处理LAMMPS的log文件,画出时间-能量曲线。首先,我得回忆一下LAMMPS的log文件结构。通常,log文件在运行过程中会输出不同的热力学数据,比如时间步、温度、势能、动能等,每列对应不同的变量,可能还会有不同的“段”,比如最小化过程和模拟运行阶段的数据。 用户可能需要先读取log文件,提取出时间和能量数据。但log文件中可能包含注释行,比如以“WARNING”开头的行,或者是不同段的分隔行,比如“Step Temp E_pair”这样的头行。这时候需要用Python正确处理这些情况,避免读取错误的数据。 接下来要考虑的是如何解析log文件。可能的方法是按行读取,找到包含数据的行。例如,数据行通常以数字开头,而注释或头行则以字母开头。可以用正则表达式来匹配数字开头的行,从而过滤出有效数据。 然后,提取时间和能量列。需要确定在log文件中,时间步(Step)和能量(比如TotEng、PotEng等)所在的列索引。例如,假设log文件的头行是“Step Temp PotEng KinEng TotEng”,那么Step在第0列,TotEng在第4列,以此类推。但用户可能需要确认具体是哪种能量,比如势能、动能还是总能。 数据读取后,可能需要转换为浮点数,并存储到列表中。之后用matplotlib绘制曲线,横轴是时间步,纵轴是能量。需要注意的是,LAMMPS的时间步通常是步数,可能需要乘以时间步长(dt)转换为实际时间,但用户如果只是要步数,可能不需要转换。 另外,用户可能有多个阶段的数据,比如在能量最小化后开始正式模拟,这时候log文件中会有多个数据段,需要用循环来处理,或者确保只读取所需部分。 可能的陷阱包括:不同的LAMMPS版本输出的log格式略有不同,或者用户自定义了输出的热力学变量,导致列的顺序不一致。因此,代码需要灵活处理,比如先读取头行确定列索引,再提取对应数据。 最后,生成图表时,添加标签、标题、图例等,使图表更清晰。可能还需要保存为图片文件,如PNG或PDF。 总结步骤:读取文件,解析数据,提取时间和能量列,绘制图表。需要处理可能的注释行和多段数据,确保列索引正确。</think>我将分步骤说明用Python处理LAMMPS日志文件并绘制时间-能量曲线的完整流程: 1. **理解log文件结构** - 典型LAMMPS.log包含如下数据段: ```text Step Temp E_pair E_mol TotEng Press 0 0.2 -3117.2 0 -3116.8 123.5 1000 0.21 -3116.5 0 -3116.1 125.3 ... ``` 2. **准备Python环境** ```bash pip install matplotlib numpy pandas ``` 3. **完整数据处理代码** ```python import matplotlib.pyplot as plt import numpy as np def parse_lammps_log(logfile): steps, energies = [], [] with open(logfile, 'r') as f: headers = [] in_data_block = False for line in f: line = line.strip() # 检测数据段开始 if line.startswith('Step'): headers = line.split() in_data_block = True continue if in_data_block: if not line or line.startswith('Loop'): in_data_block = False continue # 确保是数字行 if line[0].isdigit(): data = list(map(float, line.split())) steps.append(data[0]) energies.append(data[headers.index('TotEng')]) return np.array(steps), np.array(energies) # 使用示例 steps, energies = parse_lammps_log('lammps.log') plt.figure(figsize=(10,6)) plt.plot(steps, energies, 'b-', linewidth=1.5) plt.title('时间-总能量演化曲线', fontsize=14) plt.xlabel('模拟步数', fontsize=12) plt.ylabel('总能量 (能量单位)', fontsize=12) plt.grid(True, linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('energy_evolution.png', dpi=300) plt.show() ``` 4. **关键改进功能说明** - **自动识别数据块**:处理多个连续或间断的模拟阶段 - **动态列匹配**:通过headers自动定位所需参数列 - **异常处理增强**:跳过非数字行和空数据段 - **输出优化**:生成高分辨率(300dpi)的清晰图片 5. **典型问题处理建议** - **能量单位转换**:若需要真实单位,可添加转换系数 ```python energy_kcalmol = energies * 23.06054 # 转换为kcal/mol ``` - **多参数绘制**:同时绘制温度、压力等参数 ```python plt.plot(steps, temperatures, 'r--', label='Temperature') ``` - **大数据处理**:对于超大日志文件建议使用pandas分块读取 ```python import pandas as pd chunks = pd.read_csv('huge.log', delim_whitespace=True, comment='L', chunksize=1e5) ``` 6. **输出示例** - 生成的曲线应显示能量随时间步的收敛过程 - 正常MD模拟应呈现能量波动平衡状态 - 能量最小化过程应显示单调下降趋势 建议定期使用`plt.clf()`清除图形缓存,特别是在循环绘制多个图表时。对于长时间模拟数据,可考虑添加移动平均线突显趋势: ```python window_size = 100 moving_avg = np.convolve(energies, np.ones(window_size)/window_size, mode='valid') plt.plot(steps[window_size-1:], moving_avg, 'r--', label=f'{window_size}步移动平均') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值