想象一下,你的 AI 无需联网,就能流畅地回答问题,甚至生成代码、优化工作流。无论是 隐私保护、离线可用、低成本运行,还是 稳定无延迟,本地大模型的优势已经让越来越多的技术人跃跃欲试。
本教程学习如何在本地使用 Ollama 安装、设置和运行 QwQ-32B,并构建一个简单的 Gradio 应用程序。
今天的主角 QwQ-32B,正是本地部署的明星选手!QwQ-32B 是 Qwen 的推理模型,它旨在在复杂问题解决和推理任务中表现出色。尽管只有 320 亿个参数,但该模型在性能上与拥有 6710 亿个参数的更大模型 DeepSeek-R1 相当。
尽管其规模庞大,QwQ-32B 可以量化以在消费级硬件上高效运行。在本地运行 QwQ-32B 可让您完全控制模型执行,无需依赖外部服务器。以下是本地运行 QwQ-32B 的一些优点:
使用 Ollama 在本地设置 QwQ-32B
Ollama 通过处理模型下载、量化执行简化了在本地运行LLMs的过程。
步骤 1:安装 Ollama
下载并安装Ollama 。
下载完成后,像安装其他应用程序一样安装 Ollama 应用程序。
第 2 步:下载并运行 QwQ-32B
让我们测试设置并下载我们的模型。启动终端并输入以下命令来下载并运行 QwQ-32B 模型:
ollama run qwq:32b
QwQ-32B 是一个大型模型。如果您的系统资源有限,您可以选择较小的量化版本。例如,下面我们使用的Q4_K_M
版本是 19.85GB 的模型,它在性能和大小之间取得了平衡:
ollama run qwq:Q4_K_M
步骤 3:在后台运行 QwQ-32B
要持续运行 QwQ-32B 并通过 API 为其提供服务,请启动 Ollama 服务器:
ollama serve
这将使该模型可用于下一节讨论的应用程序。
本地使用 QwQ-32B
现在 QwQ-32B 已经设置好了,让我们探索如何与它交互。
步骤 1:通过 CLI 运行推理
模型下载完成后,您可以直接在终端中与 QwQ-32B 模型进行交互:
ollama run qwq``How many r's are in the word "strawberry”?
模型响应通常是其思考响应(封装在<think> </think>
标签中)然后是最终答案。
步骤 2:通过 API 访问 QwQ-32B
要将 QwQ-32B 集成到应用程序中,您可以将 Ollama API 与 curl 结合使用。在终端中运行以下 curl 命令。
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{` `"model": "qwq",` `"messages": [{"role": "user", "content": "Explain Newton second law of motion"}],` `"stream": false``}'
curl
是 Linux 原生的命令行工具,但也适用于 macOS。它允许用户直接从终端发出 HTTP 请求,使其成为与 API 交互的绝佳工具。
注意:确保正确放置引号并选择正确的本地主机端口以防止dquote
出现错误。
步骤3:使用Python运行QwQ-32B
我们可以在任何集成开发环境(IDE)中运行Ollama。您可以使用以下代码安装Ollama Python包:
pip install ollama
安装 Ollama 后,使用以下脚本与模型交互:
import ollama``response = ollama.chat(` `model="qwq",` `messages=[` `{"role": "user", "content": "Explain Newton's second law of motion"},` `],``)``print(response["message"]["content"])
该ollama.chat()
函数接收模型名称和用户提示,将其作为对话进行处理。然后脚本提取并打印模型的响应。
构建QwQ-32B 本地推理应用
我们可以使用 QwQ-32B 和 Gradio 创建一个简单的逻辑推理助手,它将接受用户输入的问题并生成结构化、合乎逻辑的响应。
此应用程序将使用 QwQ-32B 的分步思维方法提供清晰、合理的答案,使其可用于解决问题、辅导和 AI 辅助决策。
步骤 1:先决条件
在深入实施之前,让我们确保已经安装了以下工具和库:
- Python 3.8+
- Gradio:创建一个用户友好的网络界面。
- Ollama :一个本地访问模型的库
运行以下命令安装必要的依赖项:
pip install gradio ollama
安装上述依赖项后,运行以下导入命令:
import gradio as gr``import ollama``import re
步骤 2:使用 Ollama 查询 QwQ 32B
现在我们已经有了依赖关系,我们将构建一个查询函数将问题传递给模型并得到结构化的响应。
def query_qwq(question):` `response = ollama.chat(` `model="qwq",` `messages=[{"role": "user", "content": question}]` `)` `full_response = response["message"]["content"]` `# Extract the <think> part and the final answer` `think_match = re.search(r"<think>(.*?)</think>", full_response, re.DOTALL)` `think_text = think_match.group(1).strip() if think_match else "Thinking process not explicitly provided."` `final_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL).strip()` `return think_text, final_response
该query_qwq()
函数通过 Ollama 与 Qwen QwQ-32B 模型交互,发送用户提供的问题并接收结构化响应。它提取了两个关键组件:
- 思考过程:包括模型的推理步骤(摘自…标签)。
- 最终响应:此字段包含推理后的结构化的最终答案。(不包括部分)
这将推理步骤和最终响应分开,确保模型得出结论的透明度。
步骤 3:创建 Gradio 界面
现在我们已经设置了核心功能,我们将构建 Gradio UI。
interface = gr.Interface(` `fn=query_qwq,` `inputs=gr.Textbox(label="Ask a logical reasoning question"),` `outputs=[gr.Textbox(label="Thinking Process"), gr.Textbox(label="Final Response")],` `title="QwQ-32B Powered: Logical Reasoning Assistant",` `description="Ask a logical reasoning question and the assistant will provide an explanation."``)``interface.launch(debug = True)
这个 Gradio 界面设置了一个逻辑推理助手,它通过函数接收用户输入的逻辑推理问题,gr.Textbox()
并使用该query_qwq()
函数进行处理。
最后,该interface.launch()
函数启动启用了调试的 Gradio 应用程序,允许实时错误跟踪和日志以进行故障排除。
使用 Ollama 在本地运行 QwQ-32B 可实现私密、快速且经济高效的模型推理。
在一系列权威基准测试中,千问QwQ-32B 模型表现异常出色,几乎完全超越了OpenAI-o1-mini,比肩最强开源推理模型DeepSeek-R1:在测试数学能力的AIME24评测集上,以及评估代码能力的LiveCodeBench中,千问QwQ-32B表现与DeepSeek-R1相当,远胜于o1-mini及相同尺寸的R1蒸馏模型。
大模型正在变得越来越高效,硬件门槛也在降低,未来 “个人 AI” 的可能性正逐渐变为现实。
你怎么看 本地 AI 取代云端 API 这个趋势?你会考虑部署 QwQ-32B 作为自己的私人 AI 吗?
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓