MCP(Model-Context Protocol,模型上下文协议)和A2A(Agent-to-Agent,智能体到智能体)是大模型应用中两个重要的协议,分别侧重于智能体与外部工具的交互以及智能体之间的协作。
一、MCP(模型上下文协议)
MCP(Model Context Protocol,模型上下文协议)是什么?MCP是一种标准化协议,旨在为人工智能模型(如大语言模型)与外部工具、数据源之间的交互提供统一接口。
MCP是AI智能体与外部工具的"USB接口",定义了AI模型与外部工具(如API、数据库、文档编辑器等)的交互标准,开发者无需为每个工具单独开发适配代码。
MCP协议旨在实现大型语言模型(LLM)与外部数据源和工具之间的无缝集成,通过提供标准化的接口,使AI应用程序能够安全、可控地与本地或远程资源进行交互。
MCP Server 和 MCP Client 是什么?MCP Server 和 MCP Client 是模型上下文协议(MCP)中的两个核心组件。
以支付宝MCP为案例,MCP Server 和 MCP Client 的定义与功能如下:
-
MCP Server:@alipay/mcp-server-alipay 是支付宝开放平台提供的 MCP Server,让你可以轻松将支付宝开放平台提供的交易创建、查询、退款等能力集成到 LLM 应用中,并进一步创建具备支付能力的智能工具。
-
MCP Client:开发者构建的“支付能力调用端”,通常是 AI 应用或智能体,负责向 MCP Server 发起支付请求并处理响应。例如,一个 AI 助手通过自然语言交互,引导用户完成支付流程。
{
"mcpServers": {
"mcp-server-alipay": {
"command": "npx",
"args": ["-y", "@alipay/mcp-server-alipay"],
"env": {
"AP_APP_ID": "2014...222",
"AP_APP_KEY": "MIIE...DZdM=",
"AP_PUB_KEY": "MIIB...DAQAB",
"AP_RETURN_URL": "https://success-page",
"AP_NOTIFY_URL": "https://your-own-server"
}
}
}
}
二、A2A(智能体到智能体)
A2A(Agent-to-Agent,智能体到智能体)是什么?A2A是一种开放协议,旨在实现不同智能体之间的直接互通与协作。
A2A是智能体间的"外交协议",专注于不同AI智能体间的跨平台协作。通过HTTP/SSE等技术,支持智能体发现彼此能力、任务协调及多模态交互。例如,物流Agent与仓储Agent可实时同步货物状态。
SSE(Server-Sent Events,服务器发送事件)是什么?SSE是一种基于 HTTP 协议的技术,允许服务器向客户端单向、实时地推送数据。
SSE是实时数据推送的"广播电台",开发者可以在客户端通过创建一个 EventSource 对象与服务器建立持久连接,服务器则通过该连接持续发送数据流,而无需客户端反复发送请求。在AI协作场景中,A2A协议利用SSE实现智能体间的实时状态同步。
以高德地图开放平台为例,通过通用级 SSE(Server-Sent Events)协议实现A2A(Agent-to-Agent)交互,可以构建一个基于地理信息服务的智能体协作框架。
- AI Agent → Map Service Agent:通过 REST API 或 WebSocket 发送请求(如“查询从 A 到 B 的最优路径”)。
-
Map Service Agent → AI Agent:通过 SSE 推送实时地理数据(如“当前路段拥堵,建议绕行”)。
为实现 LBS 服务与 LLM 更好的交互,高德地图 MCP Server 现已覆盖12大核心服务接口,提供全场景覆盖的地图服务,包括地理编码、逆地理编码、IP 定位、天气查询、骑行路径规划、步行路径规划、驾车路径规划、公交路径规划、距离测量、关键词搜索、周边搜索、详情搜索等。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】