随着人工智能技术的快速发展,AI代理(Agent)的应用场景越来越广泛。然而,不同AI代理之间的协作和通信却面临着诸多挑战。A2A协议和MCP协议这两种协议分别针对不同的场景,旨在实现AI代理之间的高效协作和资源管理。本文将深入解析这两种协议的核心概念、工作原理以及实际应用。
Google A2A协议示意图
谷歌A2A协议架构图,展示了本地代理与云端代理的交互。
1、 A2A协议:AI代理间的通信桥梁
1.1 什么是A2A协议?
A2A协议(Agent-to-Agent Protocol)是谷歌推出的一种开放协议,旨在实现不同AI代理之间的通信和协作。无论是来自不同厂商的代理,还是基于不同框架开发的代理,A2A协议都能为它们提供统一的通信标准,从而实现跨平台、跨系统的无缝协作。
A2A协议的核心目标是解决多代理系统中的互操作性问题。通过标准化通信格式和任务管理机制,A2A协议使得代理之间能够安全地交换信息、协调任务,并共同完成复杂的工作流程。
1.2 A2A协议的工作原理
A2A协议的核心设计基于任务管理和能力发现。以下是其关键功能模块:
- 能力发现:每个代理通过“Agent Card”公开其能力,其他代理可以通过该卡片发现并选择合适的代理进行协作。
- 任务管理:A2A协议定义了“任务”对象,代理之间通过任务对象进行交互。任务可以是即时完成的简单任务,也可以是耗时较长的复杂任务。
- 用户体验协商:代理之间可以协商用户界面的展示方式,例如文本、图片、视频等,确保用户体验的一致性。
- 安全协作:A2A协议内置了企业级的安全机制,支持身份验证和授权,确保代理之间的通信安全。
Google A2A协议示意图
A2A协议的关键功能模块,包括任务管理、能力发现和安全协作。
A2A协议的应用场景非常广泛,尤其是在需要多代理协作的企业环境中。例如:
- 招聘流程:招聘经理可以通过A2A协议让多个代理协作完成候选人筛选、面试安排和背景调查等任务。
- 供应链管理:多个代理可以协作完成库存管理、订单处理和物流调度等复杂任务。
- 客户服务:A2A协议可以实现多个代理之间的无缝协作,提升客户服务的效率和质量。
2、 MCP协议:为AI代理提供上下文和工具
2.1 什么是MCP协议?
MCP协议(Model Context Protocol)是由Anthropic推出的一种协议,旨在为AI代理提供上下文和工具支持。与A2A协议不同,MCP协议更关注如何为AI代理提供所需的上下文信息,以便它们能够更好地理解和执行任务。
MCP协议的核心功能包括上下文管理、工具调用和资源访问。通过MCP协议,AI代理可以更高效地访问外部资源,例如数据库、API和工具,从而提升其执行任务的能力。
2.2 MCP协议的工作原理
MCP协议的核心设计基于模块化和可重用性。以下是其关键功能模块:
- 上下文管理:MCP协议为AI代理提供了上下文信息的标准化管理方式,确保代理在执行任务时能够获取所需的背景信息。
- 工具调用:MCP协议支持代理调用外部工具,例如计算器、搜索引擎等,从而扩展其功能。
- 资源访问:MCP协议允许代理访问外部资源,例如数据库和API,从而获取所需的数据和信息。
- 安全边界:MCP协议内置了安全机制,确保代理在访问外部资源时不会泄露敏感信息。
Google MCP协议示意图
MCP协议的架构图,展示了主机、客户端和服务器之间的交互。
MCP协议的应用场景主要集中在需要上下文支持和工具调用的AI任务中。例如:
- 文档生成:MCP协议可以为AI代理提供所需的上下文信息,帮助其生成符合要求的文档。
- 数据分析:通过MCP协议,AI代理可以访问数据库和API,从而完成复杂的数据分析任务。
- 代码生成:MCP协议支持代理调用代码生成工具,从而自动化代码编写过程。
3. A2A协议与MCP协议的对比
虽然A2A协议和MCP协议都旨在提升AI代理的能力,但它们的侧重点不同:
特性 | A2A协议 | MCP协议 |
---|---|---|
核心功能 | 代理间通信与协作 | 上下文管理与工具调用 |
应用场景 | 多代理协作、任务管理 | 上下文支持、资源访问 |
通信模式 | 代理间直接通信 | 代理与外部资源通信 |
安全机制 | 企业级身份验证与授权 | 安全边界与资源访问控制 |
A2A与MCP协议对比图
A2A协议与MCP协议的对比图,展示了它们的核心功能和应用场景。
4. 实际案例:A2A与MCP的协同应用
在实际应用中,A2A协议和MCP协议可以协同工作,共同提升AI系统的能力。例如,在智能客服系统中:
- A2A协议:多个客服代理可以通过A2A协议协作处理客户问题,例如查询订单状态、解答产品问题等。
- MCP协议:客服代理可以通过MCP协议访问外部资源,例如订单数据库和产品知识库,从而获取所需的信息。
通过这种协同工作,智能客服系统能够更高效地处理客户请求,提升客户满意度。
5. 总结
A2A协议专注于解决多代理协作的互操作性问题,而MCP协议则为AI代理提供了上下文和工具支持。这两种协议的结合,为构建高效、智能的AI系统提供了强大的技术支持。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。