2025年4月9日,谷歌在Google Cloud Next 25大会上推出Agent2Agent 协议(A2A),这是一项全新的开放标准,旨在让AI智能体能够相互通信。此前,Anthropic的模型上下文协议(MCP) 为智能体提供了一种结构化的工具使用方式,而A2A则为智能体提供了一种相互协作的方式,就像是给AI智能体们制定了一套“通用社交礼仪”和“标准沟通语言”,让它们可以互相理解、协作,共同完成复杂任务。
1、A2A协议是什么?
A2A(Agent-to-Agent Protocol) 是谷歌推出的一项开源通信协议,旨在为不同框架、供应商开发的AI智能体(Agent)提供标准化协作方式,使其能够跨越技术壁垒,相互通信、分配任务并协同完成复杂流程。A2A协议的核心目标是解决智能体间的互操作性问题,推动多智能体系统从“孤立运行”向“开放协作”转变。
例如,企业中的HR智能体可通过A2A协议直接与财务智能体交换数据,无需人工干预。协议通过定义任务管理、能力发现、安全认证等标准接口,让智能体像“数字团队”一样协作。
2、 为什么需要A2A协议?
当前AI智能体生态面临两大挑战:
- 碎片化问题:不同厂商的智能体因技术栈差异无法直接协作,形成“信息孤岛”,例如HR系统与财务系统需人工传递数据。
- 复杂性限制:单一智能体难以独立完成多领域任务(如同时处理数据分析、文档生成等),需依赖团队协作。
A2A的价值:
- 提升效率:通过任务自动分配与结果同步,减少人工干预。
- 扩展能力:整合不同领域智能体的优势,完成跨系统复杂任务(如招聘流程中筛选、面试、背调的分工协作)。
- 企业应用:支持多模态通信(文本、音频、视频)与企业级安全认证,适配复杂场景需求。
该协议由谷歌联合50余家科技企业(包括Salesforce、SAP、埃森哲等)共同推动,目标就是解决AI生态中“各自为战”的痛点。
3、 A2A如何工作?
A2A协议基于HTTP和JSON-RPC等标准构建,核心组件包括:
- Agent Card(智能体名片):每个智能体通过JSON文件声明自身能力(如支持的任务类型、接口URL、认证方式),供其他智能体发现。
- 任务管理:定义任务生命周期(提交→执行→完成/失败),支持实时状态订阅(如Server-Sent Events)。
- 多模态通信:允许消息包含文本、文件、结构化数据等多种内容类型,支持用户体验协商(如格式适配)。
典型工作流程:
- 发现:客户端智能体通过Agent Card定位目标智能体。
- 任务发起:通过
tasks/send
接口发送任务请求(如生成报告)。 - 状态跟踪:订阅任务进展(如“处理中”或“完成”)。
- 结果获取:接收包含
artifact
(任务输出)的响应。
例如,在投资决策场景中,主智能体通过A2A协议调用新闻分析智能体和股票数据智能体,整合结果后生成建议。
4、 A2A与MCP协议的关系
A2A与MCP(Model Context Protocol) 是互补协议,解决不同层面的问题:
维度 | A2A | MCP |
---|---|---|
核心功能 | 智能体间协作(如任务分配、通信) | 智能体与外部工具/数据连接(如API调用) |
应用场景 | 多智能体协同(如跨部门协作) | 单智能体增强(如访问数据库) |
示例 | 智能体A请求智能体B执行任务 | 智能体调用财经API获取数据 |
技术定位 | 高层协作框架 | 底层资源接口 |
协同模式:
- 分层协作:MCP为智能体提供工具支持(如访问数据),A2A则协调多个智能体分工。例如,招聘场景中,MCP用于调用API获取简历,A2A用于协调筛选与面试安排。
5、A2A与MCP生态现状
- A2A生态:已有50+企业支持,包括Salesforce、SAP、MongoDB等,谷歌通过开源策略推动普及,并与Gemini模型深度集成。但OpenAI、Anthropic未参与,生态竞争仍在持续。
- MCP生态:获微软、Meta、OpenAI支持,聚焦单智能体能力增强。
- 未来趋势:两者可能形成分层架构(MCP为底层工具接口,A2A为协作框架),共同推动智能体从“单体智能”向“协作网络”演进。不过,协议标准化仍需时间,目前采用率尚未达临界点。
6、A2A+MCP,AI协议趋向完善
A2A+MCP组合,不只解决了智能体与数据、资源和工具的连接,而且推动从“单机工具”迈入“群体协作”时代。虽然全面落地仍需时间,但其开源属性和大厂支持,使其有望成为智能体协作的基础设施。
1、企业级应用加速落地
埃森哲已基于A2A搭建跨部门智能体矩阵,法务、财务、IT支持Agent协同处理合同审批,将平均流程从5天缩短至8小时。
2、催生新商业模式
第三方Agent市场正在形成,类似手机应用商店。初创公司可开发专业Agent(如税务申报Agent),通过A2A接入企业系统,按调用次数收费。
3、普通用户感知升级
未来使用AI服务可能像组建聊天群组:用户创建一个“旅行规划群”,添加机票、酒店、攻略Agent,它们自动讨论出最优方案,用户只需最终确认。
总结
A2A协议通过标准化智能体协作机制,为多智能体系统的落地提供了技术基础。其与MCP的互补关系,标志着AI生态从“工具赋能”向“团队协作”的升级。随着更多企业加入,A2A有望成为智能体经济的“通用语言”,但生态竞争与标准化进程仍是关键挑战。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!