做智能体最难的事情,并不是如何怎么学会做智能体,工具的学习往往是简单的,如何找到智能体真正有用的应用场景和业务需求才是核心能力。我们目前在各大智能体开发平台上的智能体,说实话,更多是玩具的属性。
在AI大模型领域,企业端正在探索的方向主要有:
1.企业的知识管理与数据治理 | 老生常谈的方向 |
2.垂域模型打造 | 利用企业私有的数据、知识、通用大模型,训练极速的垂域模型 |
3.智能体构建 | 业务驱动的,能够部分解放员工的智能体 |
4.智能体多元协同 | 基于MCP、A2A协议、物联网等,打造超级智能体 |
其中基于垂直行业或岗位的相关智能体构建,只属于精通此业务的人。通用智能体,我觉得是个伪命题,在5年内不会有突破,欢迎大厂早日打我脸。垂域方向的智能体倒是有点希望,比如专门解决大数据处理和可视化分析的智能体。
最近看了整整一天某头部财务企业的AI产品发布会,正好借这个机会,捋一下企业级的智能体刚需应用场景,希望能打开大家的思路和灵感,也准备当做《人人都会做智能体》科普公开课的内容。
刚需1:重复低级的工作流程
在AI大模型没有爆发前,这个方向的场景就已经被探索很多年了,比如大家所熟知的RPA、自动化脚本,以及借助专门训练过的神经网络,来解决企业在财务报销、合同审计、文档归结、智能招聘等工作场景中产生的大量的重复的工作内容。
这个方向的工作场景特点可以总结为6个字:重复、低级、量大
就以大家熟悉的人力资源招聘为例,从企业职位发布、简历筛选评价等场景就可以总结出以下智能体开发场景。
场景 | 智能体 | 简介 |
职位发布 | JD生成Agent | 根据企业信息和要求,自动生成完整的职位招聘需求详情 |
简历筛选 | 简历筛选Agent | 根据企业用人需求,从多维度对候选人简历进行评分,生成评价报告 |
面试辅助 | 面试辅助Agent | 根据候选人信息,自动生成面试问题,总结面试过程,输出评估建议 |
刚需2:基于数据的分析与决策
从企业的实际落地来看,数据决策类智能体是容易上手的方向,包含经营分析、业绩预测、报表生成、数据整合、趋势分析、风险预警等。这个更像是传统的商业数据分析的主要事情。
这个方向的工作场景可以总结为这几个关键字:定量分析、变量有限、数据准确、业务明确。
首先为什么是定量分析而不是定性分析,因为定量分析是最能直观感受智能体效果的,数字是不会骗人的。而定性分析的智能体,产生的结果,一般AI味很重,大模型的幻觉明显。
数据准确和业务明确要求智能体的工作流一定是清晰明确的,只有清晰明确的路径才能保证每次智能体输出的结果的稳定性,降低错误成本和技术债。从这方面看,从管理会计这门课程去出发,反而容易找到很多智能体的应用场景。
数据决策类智能体,离不开数据的准确处理和分析,但是大模型并不擅长,而且企业的生产用语是非常专业和私有的,通用大模型也不一定能准确理解提示词中的生产用语,智能体开发中,用户意图的识别反而成了一件难事。
但是我相信短则半年,长则一年,擅长千万行级别的数据分析开源垂域大模型ChatBI即将问世,效果和震撼度不亚于在Vibe Coding领域的Claude 3.7。
下面是一些容易想到的,场景相对具体的数据决策类智能体。
场景 | 智能体 | 简介 |
经营分析 | 销售数据对比Agent | 对比各时间段的销售数据,分析销售额变化趋势,快速定位异常时间段或增长点。 |
业绩预测 | 单品销售预测Agent | 基于历史单品销售数据,预测未来某个单品的销量,帮助制定库存计划和促销策略。 |
报表生成 | 部门月度报表生成Agent | 自动生成某个部门的月度财务或绩效报表,供部门负责人审阅和决策。 |
数据整合 | 客户信息整合Agent | 整合来自不同渠道的客户信息,形成统一的客户资料档案,支持客户跟进或营销活动。 |
趋势分析 | 产品偏好趋势分析Agent | 分析客户对产品的购买偏好,识别热门产品和冷门产品,帮助调整产品线和营销策略。 |
风险预警 | 库存风险预警Agent | 针对库存数据,识别可能的缺货或积压风险,提前发出预警,避免损失。 |
刚需3:客户洞察与营销
这个方向其实就是CRM方向的场景,主要方向包括客户画像、消费习惯分析、需求预通、营销策略生成、订单智能录入等。这个方向,就是我们提到的定性分析,在当前的技术阶段,是个比较难做出效果的。
这个方向的工作场景,主要特点都是围绕客户展开。
不管是客户画像、消费习惯、需求预测,其实是10年前的大数据技术主要解决的事情。想要得到有价值的客户画像、消费习惯,必须要有海量的数据和算法,这是中小企业都不具备的。
对于中小企业来说,最有使用价值的是产品客服助手、潜在客户获取和产品营销方向。以下是我们能想到的一些智能体应用场景。
场景 | 智能体 | 简介 |
产品客服助手 | 智能问答客服Agent | 自动解答客户关于产品常见问题,提供实时咨询服务,减少人工客服负担。 |
产品客服助手 | 售后问题诊断Agent | 收集客户对产品的问题描述,自动分析并判断问题类型,提供对应的解决方案或保修建议。 |
潜在客户获取 | 客户线索挖掘Agent | 从企业现有数据中挖掘潜在客户,标记高价值客户,支持销售团队跟进。 |
产品营销 | 营销文案生成Agent | 根据产品特点及目标客户群体,快速生成个性化的营销文案,提高营销活动的效率和效果。 |
产品营销 | 优惠活动推荐Agent | 根据客户历史消费数据,推荐最可能吸引客户的促销优惠活动,提升活动转化率。 |
产品营销 | 邮件/短信营销Agent | 基于客户分组和偏好,自动生成邮件或短信内容,精准触达目标用户,提高营销活动的到达率和转化率。 |
刚需4:财务风险与合规
这个方向的智能体在企业中,也是绝对刚需中的刚需,主要包括财务风险与合规、费用合规审核、凭证检直、成本还源、账务处理、资金风险检测等等。这些智能体其实可以应用到企业会计、审计、法务、投资等多个岗位,是一个非常大的市场。
这类智能体的特点是和钱直接相关,虽然市场大,但是对智能体的要求也非常高。以下是我们能想到的一些智能体应用场景。
场景 | 智能体 | 简介 |
财务风险与合规 | 财务风险预警Agent | 监控企业财务数据,识别潜在的财务风险(如资金链断裂、现金流不足等),并提供预警和应对建议。 |
费用合规审核 | 费用报销合规审核Agent | 对员工报销单据进行自动审核,识别不合规条目并标记问题原因,减少人工审核成本。 |
凭证检直 | 凭证合法性校验Agent | 自动校验财务凭证的合法性和真实性,防范虚假凭证或重复凭证的风险,确保账务数据准确性。 |
成本还原 | 成本追溯分析Agent | 分析企业产品或服务的成本构成,追溯各成本环节来源,帮助企业优化成本结构和定价策略。 |
账务处理 | 智能账务处理Agent | 自动完成日常账务处理(如分类账录入、对账、结账),提升财务部门工作效率,避免人工错误。 |
资金风险检测 | 资金流动性监控Agent | 监控企业资金流动情况,识别异常资金流动或潜在的流动性风险,确保资金链安全稳定。 |
刚需5:生产与供应链优化
这个方向的智能体,不同的企业需求是不一样的,虽然是刚需,但是个性化确非常强,只有定制才能满足企业的需求。
生产与供应链优化主要包含智能排产、设备故障预测、工艺参数优化、供应链调度、物料管理、库存管理等。这类智能体的特点就是个性化、与业务强关联!
我们能想到的具体智能体场景主要有下面这些,不过颗粒度还是比较粗,实际开发的话,还需要进一步细化。
场景 | 智能体 | 简介 |
智能排产 | 生产排产优化Agent | 根据订单需求和生产能力,动态优化生产排产计划,提高生产效率和产能利用率。 |
设备故障预测 | 设备健康监控Agent | 基于设备运行数据,预测设备故障发生的可能性,减少计划外停机时间和维护成本。 |
工艺参数优化 | 工艺参数优化Agent | 分析生产过程中的工艺参数,优化关键工艺环节,降低能耗和提升产品质量。 |
供应链调度 | 智能供应链调度Agent | 基于订单需求和供应链资源,优化供应链调度,降低物流和供应成本,提升交付效率。 |
物料管理 | 物料需求预测Agent | 根据生产计划和历史数据,预测物料需求,避免原料短缺或积压。 |
库存管理 | 智能库存优化Agent | 动态监控库存状态,优化库存结构,降低库存持有成本和物料浪费。 |
总结
总体而言,企业级的智能体开发,需要对接企业现有的ERP、MES(制造执行系统)或WMS(仓储管理系统)等,确保数据流畅整合,而且也需要根据企业的行业特点(如电子制造、汽车、医药等),提供定制化的智能体功能模块,每个智能体的优化目标(如降低能耗、提高设备利用率、减少库存)需要与企业业务目标清晰绑定,确保投入产出比最高。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓