斯坦福李飞飞最新巨著《AI agent综述》

《AGENT AI: SURVEYING THE HORIZONS OF MULTIMODAL INTERACTION》这份综述深入探讨了多模态人机交互(Human-Computer Interaction, HCI)的当前发展状态和未来的研究方向。多模态HCI旨在通过语音、图像、文本、眼动和触觉等多种信息模式来实现人与计算机之间的信息交换,这种交互方式在生理心理评估、办公教育、军事仿真和医疗康复等领域具有广泛的应用前景。
在这里插入图片描述

综述系统地梳理了以下几个方面的研究进展:

[1]大数据可视化交互:随着物联网和人工智能技术的发展,人机交互设备已经广泛应用于日常生活中。大数据可视化交互技术通过将抽象数据转换为图形化表征,使用户能够更直观地理解和探索数据。研究者们正在探索如何利用多感知通道来增强数据可视化的交互体验,例如通过触觉和听觉来补充视觉信息,提升用户的沉浸感和参与感。
在这里插入图片描述

[2]基于声场感知的交互:这种交互方式涉及到使用麦克风阵列和机器学习算法来识别特定场景、环境或人体发出的声音。它允许用户通过声音与计算机进行交互,提供了一种非视觉的交互手段。

在这里插入图片描述

[3] 混合现实实物交互:混合现实技术结合了物理世界和虚拟世界,使用户能够通过现实世界中的物体与虚拟环境进行交互。这种交互方式在虚拟现实和增强现实中变得越来越重要,它允许用户以更自然的方式与虚拟对象进行互动。[4]可穿戴交互:随着智能手表和健康监测设备的普及,可穿戴设备成为了HCI的一个新的研究方向。研究者们正在探索如何通过手势、触摸和皮肤电子技术来实现更自然的交互方式。
在这里插入图片描述

[5]人机对话交互:人机对话交互涉及到语音识别、情感识别、对话系统和语音合成等多个模块。研究者们致力于提高对话系统的性能,使其能够更自然地理解和响应用户的语音输入。
最后,文章指出了多模态HCI未来的研究方向,包括拓展新的交互方式、设计高效的多模态交互组合、构建小型化交互设备、跨设备分布式交互以及提升开放环境下交互算法的鲁棒性。
在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 李飞飞AI代理方面的工作概述 李飞飞作为斯坦福大学教授及计算机视觉领域的权威学者,其研究工作涵盖了广泛的机器学习应用领域。尽管主要贡献集中在图像识别和计算机视觉上,但这些技术的发展对于构建更智能的AI代理至关重要。 #### 计算机视觉的进步推动AI代理发展 李飞飞领导下的ImageNet项目极大地促进了卷积神经网络(CNNs)的研究和发展[^1]。这一进步不仅限于静态图片分析,也为动态环境感知提供了基础支持,使得AI代理能够更好地理解周围世界并作出反应。 #### 多模态交互能力增强 除了视觉输入外,现代AI代理还需要处理来自不同感官的信息流。李飞飞团队探索了多模态融合的方法论,即如何有效地整合视听觉等多种类型的信号来提升机器人或其他形式的人工智能系统的认知水平[^2]。这种跨学科的努力有助于创建更加自然流畅的人机互动体验。 #### 社会影响考量纳入模型设计 值得注意的是,在推进技术创新的同时,李飞飞也强调伦理和社会责任的重要性。这体现在她倡导将公平性、透明度等因素融入到AI系统的设计原则之中,从而确保这类先进技术能造福全人类而非加剧社会不平等现象[^3]。 ```python # Python代码示例:使用预训练CNN提取特征向量 from tensorflow.keras.applications import VGG16 model = VGG16(weights='imagenet', include_top=False) def extract_features(image_path): img = load_img(image_path, target_size=(224, 224)) x = img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) features = model.predict(x) return features.flatten() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值