字节版manus,多模态 AI Agent开源!

项目简介

Agent TARS 是一个开源的多模态人工智能代理,它通过视觉解析网页并无缝集成到命令行和文件系统中,利用浏览器操作。字节跳动开源的多模态 AI Agent,最大的特点是能够通过视觉方式理解网页内容,并与命令行和文件系统无缝集成

功能


  • 🌐 高级浏览器操作:通过代理框架执行复杂的任务,如深度研究和操作员功能,实现全面规划和执行。

  • 🛠️ 全面工具支持:与搜索、文件编辑、命令行和模型上下文协议(MCP)工具集成,以处理复杂的工作流程。

  • 增强桌面应用:全新的用户界面,包括浏览器显示、多模态元素、会话管理、模型配置、对话流程可视化以及浏览器/搜索状态跟踪。

  • 🔄 工作流程编排:无缝连接 GUI 代理工具——搜索、浏览、探索链接,并将信息综合成最终输出。

  • ⚙️ 开发者友好框架:简化与 UI-TARS 的集成以及 GUI 代理项目的自定义工作流程创建。

 安装

您可以从我们的发布页面下载 Agent TARS 的最新版本。

注意:如果您已安装 Homebrew,可以通过运行以下命令安装 UI-TARS Desktop:

    brew install --cask agent-tars

    开始使用

    你好,欢迎使用 Agent TARS!

    本指南将指导您完成设置第一个 Agent TARS 项目的流程。


    必要的配置
    在开始之前,您需要设置一些必要的配置。

    启用 MacOS 中 Agent TARS 的辅助功能权限:

    • 系统设置 -> 隐私和安全 -> 无障碍访问

    accessibility-permission.png

    您可以点击左下角的按钮打开配置页面:

    图片

    然后您可以设置模型配置和搜索配置。

    对于模型配置,您可以设置模型提供者和 API 密钥:

    model-config.png

    对于 Azure OpenAI,您可以设置更多参数,包括 apiVersion、deploymentName 和 endpoint。

    搜索配置中,您可以设置搜索提供者和 API 密钥:

    图片

    开始您的第一次旅程
    现在,你可以开始你的第一次 Agent TARS 之旅了!

    您可以在输入框中输入您的问题,然后按 Enter 键发送问题。这里有一个示例:

    first-journey.jpeg


    它正在工作!

    我们也支持人机交互,这意味着您可以通过输入框在工作过程中与代理进行交互。如果您想改变当前代理的工作方向,您可以在顶部位置的特殊输入框中输入您的想法,然后按 Enter 键发送您的想法。

     

     如何学习AI大模型?

    我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

    我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

    第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

    第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

    第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

    第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

    第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

    第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

    第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


    👉学会后的收获:👈
    • 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

    • 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

    • 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

    • 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


    1.AI大模型学习路线图
    2.100套AI大模型商业化落地方案
    3.100集大模型视频教程
    4.200本大模型PDF书籍
    5.LLM面试题合集
    6.AI产品经理资源合集

    👉获取方式:
    😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

    ### 关于 TARS 框架的教程与使用指南 #### 项目目录结构及介绍 TARS 的项目目录结构清晰明了,便于开发者快速上手。其主要组成部分包括核心框架、服务管理工具以及周边生态组件[^2]。 #### 配置文件说明 配置文件是 TARS 框架的重要部分之一,它定义了服务运行所需的各种参数和环境设置。通过合理配置这些文件,可以实现灵活的服务部署和高效性能优化[^1]。 #### 启动流程解析 了解如何正确启动 TARS 服务对于实际开发至关重要。通常情况下,需要先初始化必要的依赖项和服务注册表,再加载对应的业务逻辑模块并监听指定端口等待请求到来。 #### 周边工具简介 为了提升用户体验和完善整体解决方案,TARS 提供了一系列实用性强且功能丰富的辅助工具: - **TARS Admin**: 可视化操作平台,帮助管理员轻松完成诸如本升级、参数修改等工作; - **TARS-SDK**: 跨语言通信桥梁,促进异构系统的无缝对接; - **TARS-Proxy**: 实现流量分发策略定制等功能; - **TARS-Config**: 统一管控全局设定值的变化情况,减少人为失误带来的风险[^4]。 以下是基于 Python 客户端调用 TARS 接口的一个简单例子: ```python from tars.client import TarsClient def call_tars_service(): client = TarsClient() result = client.call('TestService', 'sayHello', ['World']) return result if __name__ == "__main__": response = call_tars_service() print(response) ``` 此脚本展示了怎样利用官方提供的 SDK 来远程触发目标服务器上的方法执行,并打印返回的结果数据。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值