30+程序员转行大模型,别再犹豫转不转行,只看理论不行动了!

别再犹豫转不转行,只看理论不行动了!

在这里插入图片描述

作为一位30+北漂男程序员,2个月零基础转行大模型,成功拿下月薪2w+的offer!今天我来分享一下我的亲身经历, 希望能给还在迷茫中的你一些启发!

在这里插入图片描述

转行前的“悲惨”生活

我,一个30+男单身青年,因为家里在一个小城市,大学时一心想报到大城市来,想尝试一下新的生活方式,所以选择了一个普通的二本学院在北京开启了我的大学生活。

因为选择的计算机专业,每天都很忙,也比较难 听学长学姐说我们专业毕业了也是比较累的,但是我当时励志在北京创出一番事业来,所以我觉得其实都还好。

img

后来我留在北京工作生活,成功入职一家软件开发公司,天天在高级写字楼工作,我想很多人都会很高兴在北京获得一份在高级写字楼里的工作,我也不例外,刚毕业时我也非常高兴获得这样一份工作,觉得自己离目标又进一步。

但是我到这里按年算起来,今年已经是第十年了。 这十年来我从一个基层码农到现在的中层,月薪也涨到了2w+,一直以来我都是一个对生活没有什么特殊要求的人。所以一直没有特别在意自己的想法。也没有思考过生活应该怎么过。

img

但是今年我生日时,我突然就意识到,我已经32了,**我好像从来没有自己的生活,**因为程序员每天都很忙,不是在这里测试就是在那里开发,**压力也很大,**每天根本没有时间思考其他的问题。

最基本的下班时间都不能够保证, 加班到十一二点是常态,有时候还是熬夜来找出BUG,**没有一点自己的时间。**朋友约我出去玩吃饭时间都不够,更不要说出去旅游什么的活动,从来都是没有我的,有时候放个小假都要随时随地的带着电脑。

用我们行业的话来说就是**“对于程序员来说,电脑就是子弹,要随时带着准备上战场”。我就在这样的状态下工作了十年**,生活过一团糟,身边的朋友都结婚生子,出国进修,自己创业,各种生活都有,而我却还是一个连自己的时间都没有的单身。而且工资十年来也没有涨很多。

img

所以就在这个32岁的生日之后的一个周五,处理完一周的工作,坐在工位上,**没有社交,**看着外面灯火通明的写字楼和深夜堵车的长龙。

回顾毕业后到现在的点点滴滴,觉得自己好像也没有完成自己的刚毕业时的目标,好像这么多年了还在原地踏步。

我这就是我呆在北京这么久的成果吗?一定不是!我萌生了转行的念头。

一、选择大模型

有了这个念头之后我就开始关注其他的行业岗位,但是我一个30+的没有其他行业的经验的人在第一步就被PASS了。这个时候刚好老家好朋友来找我玩,在跟他的交流中我了解到一个新的行业-大模型

而且随着AI技术的快速发展,尤其是大模型(如GPT系列、LLaMA系列等)的出现,AI行业迎来了新的发展机遇。对于大龄程序员来说,转行到AI大模型领域有几个重要的原因:
• 高薪机遇:AI大模型领域的职位通常薪酬较高,对于寻求职业发展的人来说是个好机会。
• 技术前沿:AI大模型是当前技术发展的热点,参与其中可以保持技术竞争力。
• 市场需求:随着AI技术的广泛应用,对AI大模型的需求不断增加,相关人才供不应求。
• 持续学习:AI领域发展迅速,持续学习可以保持个人的技术竞争力,避免职业停滞。

二、了解大模型

我们先来分析一下大模型这个领域。

实际上,大模型开发也分为两类一类是算法工程师,另一个类是应用工程师。 算法工程师就是研究大模型算法,应用工程师是基于大模型做一些上层应用的开发。当然,后面这类也需要对大模型有或多或少的了解,毕竟,你做普通业务开发还得了解MySQL、Kafka、Redis等底层实现一样。

对**于第一类算法工程师,**要求就高了,不是说你想转行去做,就能做得了的。竞争门槛极其高,起码得是个985/211硕士毕业吧,知名期刊发表过相关论文,有扎实的机器学习、人工智能的理论功底。

如果还要考虑要不要转行去做的,建议你早点放弃吧。因为真的适合去做的,根本就不需要犹豫。

对于第二类应用工程师, 要求相对就低很多了。

像刚刚提到的大模型算法,算是有技术壁垒,而大模型应用就算是有业务壁垒的方向,他跟电商、物流、财务以及其他大型2B系统一样,业务较复杂。对于毕业五年以上的人,如果想要进入这些业务行业,就要比深耕这些行业多年的候选人,更没有优势,毕竟HR在筛选候选人的时候,还是倾向于选择业务匹配的候选人,特别是一些中高端的职位。

如果你现在的方向没有技术壁垒,也没有业务壁垒,那么,有业务壁垒的大模型方向,算是一个不错的选择。但是,不要总是看着别人碗里的饭香,别人的老婆更好,因为这种情况太常见了。今天的热门,也有可能会两三年后的天坑,就像当年的IOS、Android开发一样,没有那么多需求了。谁知道呢?

三、以及岗位和工作内容

大模型相关的岗位通常涉及数据处理、模型训练与调优、系统部署等多个环节。具体工作内容可能包括:

  • 数据预处理:清洗、标注、转换等,确保输入数据的质量。
  • 模型设计与实现:根据任务需求选择或设计合适的网络结构,并完成编码实现。
  • 训练与优化:通过调整超参数、使用正则化技术等方式提高模型性能。
  • 测试与评估:对训练好的模型进行测试,分析结果并作出相应的改进。
  • 部署上线:将最终确定的模型集成到产品中,确保其稳定高效地运行。

四、尝试自学大模型

自学大模型是一个持续学习的过程,建议从基础开始逐步深入。可以从学习线性代数、概率论等数学基础知识做起,然后逐渐过渡到机器学习、深度学习等高级主题。利用开源工具如TensorFlow、PyTorch等实践操作,结合具体的案例来加深理解和记忆。同时,积极参加线上线下的技术交流活动,与其他从业者分享经验,共同进步。

程序员转行至大模型领域需要学习一系列新的技能和知识。以下是一个详细的转行攻略,帮助您从程序员转向大模型领域:

1、了解基础知识:
数学基础:学习线性代数、概率论、统计学和微积分等基本数学知识,这些是大模型领域的基础。
编程语言:学习Python,因为它是最受欢迎的机器学习和数据科学编程语言。

2、学习机器学习理论:
机器学习基础:了解机器学习的基本概念,包括监督学习、非监督学习、强化学习等。
深度学习:深入学习神经网络的基本结构,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。

3、掌握数据处理技能:
数据清洗和预处理:学习如何处理和清洗数据,以便为大模型准备高质量的输入数据。
数据分析和可视化:学习使用工具(如Pandas、NumPy、Matplotlib)进行数据分析和可视化。

4、实践项目经验:
在线课程和项目:参加在线课程,如Coursera、edX、Udacity上的机器学习和深度学习课程,并完成相关项目。

开源贡献:参与开源项目,为现有的机器学习模型或工具贡献代码。

5、学习框架和工具:
TensorFlow和PyTorch:学习这两个最流行的深度学习框架之一,通过实践来掌握它们的使用。

模型部署:了解如何将模型部署到生产环境,学习使用Flask或Django等Web框架。

7、专业领域深入:
自然语言处理(NLP):如果对处理文本数据感兴趣,深入学习NLP,了解词嵌入、序列模型、Transformer模型等。

计算机视觉:如果对图像和视频处理感兴趣,学习计算机视觉的基础知识,如图像识别、目标检测等。

8、建立个人项目:
创建个人作品集:开发一些个人项目,如构建一个简单的推荐系统、情感分析工具或图像识别应用,并将它们添加到您的GitHub仓库中。

9、参与社区和会议:
加入AI社区:参与线上论坛、社交媒体群组和本地Meetup,与其他机器学习爱好者交流。
参加会议和研讨会:参加机器学习和AI相关的会议和研讨会,以了解最新的研究和发展趋势

10、考虑进修教育:
研究生学位:如果您希望更深入地学习,可以考虑攻读计算机科学或数据科学的研究生学位。
专业证书:获得相关的专业证书,如谷歌的机器学习工程师证书。

11、职业规划:
职业转型:在您的简历中强调新的技能和项目经验,开始申请与大模型相关的工作或实习机会。
持续学习:大模型和AI领域不断进步,持续学习新技术和算法对于保持竞争力至关重要。

通过以上步骤,您可以从程序员成功转型为大模型领域的专业人士。记住,这个过程需要时间和努力,但随着您的技能和知识的增长,您将能够在这个新兴且充满机遇的领域中取得成功。
别再犹豫转不转行,只看理论不行动了!

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值