清华发布GLM 4!32B参数模型硬刚GPT-4o,性能惊艳

在当今这个日新月异的科技时代,大语言模型(LLMs)的竞赛早已如火如荼地展开。从最初的简单模型,到如今动辄数千亿参数的庞然大物,研究人员和企业们一直在探索如何让这些模型变得更智能、更高效、更实用。然而,随着模型规模的不断扩大,随之而来的挑战也愈发明显:如何在提升推理能力的同时,提供强大的多语言支持?如何在复杂的开放性任务中表现出色,而不被高昂的计算成本所拖累?这些问题,就像悬在头顶的达摩克利斯之剑,时刻考验着每一个参与者。

就在这样的背景下,清华大学的THUDM团队带着他们的最新力作——GLM 4,强势登场了。尤其是其中的GLM-Z1-32B-0414版本,凭借其独特的设计理念和卓越的性能表现,迅速在众多模型中脱颖而出,与GPT-4o、DeepSeek-V3等知名模型展开了正面交锋。那么,GLM 4究竟有何过人之处?它又是如何在320亿参数的“中等身材”下,实现与超大模型相媲美的性能呢?接下来,就让我们一起深入探索GLM 4的奥秘。

一、GLM 4的诞生背景与使命

在大语言模型的发展历程中,小型模型虽然在成本和可及性上具有优势,但往往在性能上难以与大型模型抗衡。这就导致了一个尴尬的局面:企业和研究机构要么选择性能有限的小模型,要么就得承担高昂的计算成本去使用大模型。为了解决这一矛盾,开发出既能高效计算,又具备强大推理和指令跟随能力的中型模型,成为了当务之急。

GLM 4正是在这样的需求下应运而生。它旨在通过创新的技术手段和优化的训练策略,打破传统模型在规模与性能之间的固有平衡,为用户提供一种更加经济实惠且性能卓越的选择。而GLM-Z1-32B-0414,作为这一系列的核心代表,更是承载着这一使命,向世界证明了中型模型的巨大潜力。

二、GLM 4的技术亮点与创新

(一)强大的多语言能力和推理策略

GLM 4的训练数据堪称海量,达到了15万亿个标记。如此庞大的数据基础,为模型提供了丰富的语料支持,使其能够轻松应对多种语言的复杂任务。而其独特的“思考模式”(thinking mode),更是让模型在处理推理任务时如鱼得水。这种模式通过模拟人类的思考过程,让模型在面对问题时能够进行更深入、更全面的分析,从而得出更准确的答案。

例如,在处理一个复杂的数学问题时,GLM 4不会像传统模型那样简单地套用公式,而是会先对问题进行分解,分析其中的逻辑关系,再逐步推导出解决方案。这种深度思考的能力,使得GLM 4在推理类基准测试中表现尤为出色,甚至能够与参数高达6710亿的GPT-4o和DeepSeek-V3一较高下。

(二)先进的训练技术与优化策略

在技术层面,GLM-Z1-32B-0414采用了多种前沿的训练方法。首先,它利用了大量高质量的训练数据,包括合成生成的推理任务,来强化模型的分析能力。这就好比给模型提供了一个个精心设计的“思维训练营”,让其在不断的练习中提升自己的逻辑推理能力。

此外,模型还引入了拒绝采样(rejection sampling)和强化学习(reinforcement learning, RL)等复杂技术。拒绝采样能够帮助模型在生成回答时避免产生不合理的内容,而强化学习则通过模拟人类的反馈机制,让模型在不断的试错中学习如何更好地完成任务。比如在编程任务中,模型会根据代码的执行结果来调整自己的生成策略,从而生成更高效、更准确的代码。

更值得一提的是,GLM-Z1系列中的“深度推理模型”(Deep Reasoning Model)变体,通过冷启动方法结合扩展的强化学习训练,专门针对复杂的数学、逻辑和编程任务进行了优化。这种深度训练方式,让模型在处理高难度任务时能够展现出更强的适应性和灵活性。

(三)独特的“反刍”能力

除了上述技术亮点,GLM-Z1-Rumination-32B-0414版本还引入了一种名为“反刍”(rumination)的全新方法。这种方法允许模型在面对开放性、复杂性问题时,进行更长时间的深度思考。想象一下,当我们在面对一个棘手的问题时,往往会反复思考、斟酌,试图从不同的角度找到解决方案。GLM-Z1-Rumination-32B-0414正是借鉴了这种人类的思考方式,通过整合先进的搜索工具和多目标强化学习,让模型能够在复杂的任务中进行更深入的探索。

例如,在进行两个城市的人工智能发展比较分析时,模型不会仅仅停留在表面的描述,而是会深入挖掘每个城市在人工智能领域的优势、劣势、未来发展规划等多方面信息,并结合搜索工具获取更多的数据支持,最终生成一份全面、深入的分析报告。这种“反刍”能力,让GLM-Z1-Rumination-32B-0414在研究型写作和复杂检索任务中表现得尤为出色,为用户提供了更强大的工具支持。

三、GLM 4的性能表现

GLM 4系列的性能数据无疑是其最大的亮点之一。在多个基准测试中,GLM-4-32B-0414都展现出了令人瞩目的成绩。在指令遵循基准测试IFEval中,GLM 4取得了87.6的高分,这一成绩足以证明其在理解并执行用户指令方面的强大能力。而在任务自动化基准测试TAU-Bench中,GLM 4在零售场景中得分68.7,在航空场景中得分51.2,这些成绩都表明了模型在不同实际应用场景中的广泛适用性。

在搜索增强型问答任务中,GLM 4通过SimpleQA测试,取得了88.1的高分,这说明其在处理基于搜索的问答任务时能够快速准确地找到答案。此外,在函数调用任务的BFCL-v3基准测试中,GLM 4与GPT-4o的表现不相上下,总分达到了69.6。而在实际的代码修复场景中,通过SWE-bench测试,GLM 4在使用Moatless框架时成功率达到33.8%,这一成绩不仅展示了其在编程领域的实用性,也进一步证明了其在实际应用中的价值。

四、GLM 4的实用价值与应用场景

GLM 4不仅在技术上具有创新性,在实际应用中也展现出了巨大的价值。其320亿参数的“中等身材”,使其在性能和计算成本之间取得了完美的平衡。对于许多企业和研究机构来说,这意味着他们可以在不投入过多计算资源的情况下,享受到高性能AI解决方案带来的便利。

例如,在企业自动化办公场景中,GLM 4可以快速生成工作报告、分析数据、处理邮件等任务,大大提高工作效率。在科研领域,GLM-Z1-Rumination-32B-0414的“反刍”能力能够帮助研究人员进行复杂的文献综述、数据分析和研究方案设计,为科研工作提供有力支持。而对于那些资源有限的用户,GLM-Z1-9B-0414版本则是一个绝佳的选择。尽管其参数仅为90亿,但仍然在数学推理和通用任务中表现出色,在资源受限的情况下,能够实现效率与效果的完美平衡。

五、如何使用GLM 4

为了让更多的用户能够方便地使用GLM 4,THUDM团队还提供了详细的模型使用指南。以下是一些关键的使用建议:

(一)采样参数设置
  • 温度(temperature):建议设置为0.6,以平衡创造力和稳定性。

  • 累积概率阈值(top_p):推荐值为0.95,用于控制采样过程中的多样性。

  • top_k:设置为40,可以过滤掉罕见的标记,同时保持一定的多样性。

  • 最大新标记数(max_new_tokens):建议设置为30000,为模型的思考过程留出足够的空间。

(二)强制思考

在对话的第一行添加<think>\n,确保模型在回应之前先进行思考。如果使用chat_template.jinja,这一提示会自动注入,从而强制模型进行思考。

(三)对话历史裁剪

仅保留最终用户可见的回复。隐藏的思考内容不应保存到历史记录中,以减少干扰。这一功能已经在chat_template.jinja中实现。

(四)处理长上下文(YaRN)

当输入长度超过8192个标记时,可以考虑启用YaRN(Rope Scaling)。在支持的框架中,只需在config.json中添加以下代码片段:

"rope_scaling": {
  "type": "yarn",
  "factor": 4.0,
  "original_max_position_embeddings": 32768
}

静态YaRN会均匀应用于所有文本。它可能会略微降低短文本的性能,因此建议根据需要启用。

六、结语

GLM 4的出现,无疑是大语言模型领域的一次重大突破。它不仅在技术上实现了多项创新,更在性能和实用性之间找到了完美的平衡。无论是对于追求高性能的科研人员,还是希望在实际业务中应用AI的企业,GLM 4都提供了一个极具性价比的选择。而其开源的传统,更是让更多的开发者和用户能够参与到这一前沿技术的探索和应用中来。

在未来的道路上,GLM 4还将不断进化,持续为用户提供更强大的功能和更优质的服务。我们有理由相信,GLM 4将成为大语言模型领域的一颗璀璨明珠,引领着人工智能技术走向更加辉煌的未来。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值