一、引言
随着人工智能技术的迅猛发展,大规模预训练模型(如GPT-4、BERT等)在自然语言处理、图像识别等领域展现出了卓越的性能。然而,如何将这些强大的模型从理论落地到实际应用中,仍然是许多技术从业者面临的挑战。本篇文章旨在为读者提供一份详尽的大模型落地指南,从模型的下载、文件结构的解析,到本地化部署的具体步骤,全面覆盖整个流程。无论你是初次接触大模型的新手,还是希望深入了解部署细节的资深开发者,这篇文章都将为你提供有价值的参考和实用的操作指南。让我们一起揭开大模型神秘的面纱,探索其在实际应用中的无限可能。
二、模型文件解析
模型文件下载地址:https://huggingface.co/models
本次课程以glm-4-9b-chat进行案例演示
1、下载模型文档
2、模型文档解释
在Hugging Face上下载的模型文件中,通常会包含很多不同类型的文件,每个文件都有其特定的作用。以下是一些常见的文件及其作用的解释:
gitattributes:
作用: 这个文件主要用于Git版本控制系统,用来定义特定文件的属性和处理方式。它可以指定文件的行尾符格式、合并策略、文件类型等。
config.json:
作用: 包含模型的配置参数,如模型架构、层数、隐藏单元数等。这个文件用于初始化模型的结构。
pytorch_model.bin:
作用: 这是PyTorch模型的权重文件,包含了模型的训练参数和权重数据。
tf_model.h5:
作用: 这是TensorFlow模型的权重文件,包含了模型的训练参数和权重数据。
tokenizer_config.json:
作用: 包含分词器的配置参数,如分词器类型、特殊标记等。
vocab.txt:
作用: 包含模型使用的词汇表,通常是一个简单的文本文件,每行一个词。
merges.txt:
作用: 如果使用的是Byte-Pair Encoding (BPE) 分词器,这个文件包含了分词合并规则。
special_tokens_map.json:
作用: 定义了特殊标记(如[CLS], [SEP], [MASK]等)的映射关系。
README.md:
作用: 包含模型的描述、使用方法和其他相关信息。
preprocessor_config.json:
作用: 包含预处理器的配置参数,用于数据预处理。
model-00001-of-xxxx.safetensors
文件名为model-00001-of-00010.safetensors的文件是模型权重文件的一部分。以下是关于这个文件的详细解释:
作用
-
分片存储: 这个文件是模型权重文件的一个分片,表示整个模型的权重被分成了多个部分存储。文件名中的00001-of-00010表示这是第1个分片,总共有10个分片。
-
高效存储和加载: 使用safetensors格式存储权重,目的是提高存储和加载的效率,同时保证数据的安全性和完整性。
存储内容
-
模型权重: 文件中存储的是神经网络模型的权重数据,这些数据是经过训练后得到的参数,用于模型的推理和预测。
-
数据格式: safetensors是一种高效的二进制格式,专门用于存储和加载深度学习模型的权重。相比于传统的bin或h5格式,safetensors格式在读取速度和安全性方面有一些优势。
使用方法
-
加载模型: 在加载模型时,框架(如PyTorch或TensorFlow)会自动识别并加载这些分片文件。通常你只需要提供模型配置文件(如config.json)和分词器配置文件(如tokenizer_config.json),框架会根据配置文件加载相应的权重分片。
这些文件共同作用,确保模型能够被正确加载、初始化和使用。具体的文件内容和作用可能会根据模型的类型和框架有所不同。
三、本地环境环境准备
在Linux环境下进行大模型的本地化部署,通常需要进行以下几个步骤来准备环境:
1. 更新系统
确保系统的所有软件包都是最新的,以避免兼容性问题。
sudo yum update
2. 安装必要的依赖项
安装一些常见的依赖包,如编译器和工具链。
sudo yum groupinstall "Development Tools"
sudo yum install wget
3. 安装Miniconda
下载并安装Miniconda,这是一个轻量级的Conda版本。
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86\_64.sh
bash Miniconda3-latest-Linux-x86\_64.sh
按照提示完成安装,并重新启动终端或运行以下命令以激活Conda:
source ~/.bashrc
4. 创建Conda虚拟环境
创建一个新的Conda虚拟环境,并激活它。
conda create --name myenv python=3.8
conda activate myenv
5. 安装CUDA和cuDNN(可选)
如果需要使用GPU加速,可以通过Conda安装CUDA和cuDNN库。
conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1
6. 安装深度学习框架
根据需要选择并安装深度学习框架,如TensorFlow或PyTorch。
\# 或者安装PyTorch
conda install \-c pytorch torchvision
7. 下载大模型
根据需要下载大模型的预训练权重文件。可以使用wget或curl命令下载模型文件、或者其他方式。
8. 安装其他必要的Python包
根据模型的需求,安装其他必要的Python包。
conda install numpy pandas
conda install \-c conda-forge transformers
9. 配置环境变量
根据需要配置环境变量,如CUDA路径等。
export PATH\=/usr/local/cuda/bin:$PATH
export LD\_LIBRARY\_PATH\=/usr/local/cuda/lib64:$LD\_LIBRARY\_PATH
10. 验证安装
运行简单的测试脚本,验证所有安装和配置是否正确。
import torch
print(torch.cuda.is\_available()) \# 检查CUDA是否可用
通过以上步骤,你的环境应该已经准备好进行大模型的本地化部署。根据具体的模型和应用要求,可能还需要进行一些额外的配置和调整。
四、本地化测试
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from\_pretrained("你的模型文件存储路径", trust\_remote\_code=True)
model = AutoModel.from\_pretrained("你的模型文件存储路径", trust\_remote\_code=True).cuda()
response, history = model.chat(tokenizer, "你好", history=\[\])
print(response)
五、小结
本文详细介绍了大模型的本地化部署过程,从模型的下载到在Linux环境中的准备,再到简单的模型加载演示,提供了一条清晰的路径。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
除。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓