利用大模型构造数据集,并微调大模型

一、前言

目前大模型的微调方法有很多,而且大多可以在消费级显卡上进行,每个人都可以在自己的电脑上微调自己的大模型。

但是在微调时我们时常面对一个问题,就是数据集问题。网络上有许多开源数据集,但是很多时候我们并不想用这些数据集微调模型,我们更希望使用某本书、某个作者的作品、我们自己的聊天记录、某个角色的对话来微调模型。

用于微调的数据通常是成千上万的问答对,如果手工搜集,需要花费大量时间。

文本将介绍一种方式,利用大模型来构造自己的数据集,并使用我们构造的数据集来微调大模型。
在这里插入图片描述

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

二、构造数据集

2.1 目的

数据集通常是问答对形式,比如alpaca数据集的形式如下:

  {
    "instruction": "保持健康的三个提示。",
    "input": "",
    "output": "以下是保持健康的三个提示:\n\n1. 保持身体活动。每天做适当的身体运动,如散步、跑步或游泳,能促进心血管健康,增强肌肉力量,并有助于减少体重。\n\n2. 均衡饮食。每天食用新鲜的蔬菜、水果、全谷物和脂肪含量低的蛋白质食物,避免高糖、高脂肪和加工食品,以保持健康的饮食习惯。\n\n3. 睡眠充足。睡眠对人体健康至关重要,成年人每天应保证 7-8 小时的睡眠。良好的睡眠有助于减轻压力,促进身体恢复,并提高注意力和记忆力。"
  }


但是实际上我们能拿到的数据通常是一大段文本的形式,比如:

    小时候,那时我还只有6岁,看到一本描写原始森林壮观景象的书,名叫真实的故事。书里有一幅很精彩的插画,画的是一条大蟒蛇正在吞食一只动物,下面就是那幅插画的复制品。
    这本书上说:“大蟒蛇把它们的猎物不加咀嚼地整个吞下去,之后,就再也不动了,然后通过长达六个月的睡眠来消化掉这些食物。”
	...


现在我们要做的就是把大段文本形式的数据转换成alpaca的形式。

在以往我们只能通过人工的方式完成,而现在我们可以借助大模型的能力。大致思路就是让大模型根据文本,总结出对话、问答内容。这点可以通过Prompt工程实现。

2.2 Prompt设计

在系统Prompt中,我们需要强调根据上下文内容,让模型提取对话、问答等内容。比如:

QA_PAIRS_SYSTEM_PROMPT = """  
<Context></Context> 标记中是一段文本,学习和分析它,并整理学习成果:  
- 提出问题并给出每个问题的答案。  
- 答案需详细完整,尽可能保留原文描述。  
- 答案可以包含普通文字、链接、代码、表格、公示、媒体链接等 Markdown 元素。  
- 最多提出 30 个问题。  
"""


这样就可以让模型自己提问,自己回答。然后我们需要规定输出的格式,我们希望得到字典数组,所以用户Prompt可以设置成:

QA_PAIRS_HUMAN_PROMPT = """  
请按以下格式整理学习成果:  
<Context>  
文本  
</Context>  
[  
{{"question": "问题1","answer":"答案1"}},  
{{"question": "问题2","answer":"答案2"}},  
]  
------  
  
我们开始吧!  
  
<Context>  
{text}  
<Context/>  
"""


根据问题不同,可以对上面的内容进行一些调整。下面可以开始编写代码。

2.3 处理文档

首先导入需要用到的模块:

import json  
from typing import List  
  
from tqdm import tqdm  
from langchain_core.prompts import ChatPromptTemplate  
from langchain_core.pydantic_v1 import BaseModel, Field  
from langchain_core.output_parsers import JsonOutputParser  
from langchain_openai import AzureChatOpenAI  
from langchain_community.document_loaders import UnstructuredFileLoader  
from langchain_text_splitters import RecursiveCharacterTextSplitter


在构建chain前,我们先完成文档处理的操作。我们希望传入的内容是文本数据,这里可以是txt等文件形式。我们这里以txt为例:

def split_document(filepath):  
	loader = UnstructuredFileLoader(filepath)  
	text_spliter = RecursiveCharacterTextSplitter(  
		chunk_size=2048,  
		chunk_overlap=128  
	)  
	documents = loader.load_and_split(text_spliter)  
	return documents


使用上面的函数,可以返回大段的文本片段。

2.4 构建chain

下面就是构建用于生成数据集的chain,包括Prompt、LLM、Outputparser三个部分内容分别如下:

2.4.1 Prompt

我们使用ChatPromptTemplate将上面的Prompt整合起来,代码如下:

QA_PAIRS_SYSTEM_PROMPT = "..."
QA_PAIRS_HUMAN_PROMPT = "..."
prompt = ChatPromptTemplate.from_messages([  
	("system", QA_PAIRS_SYSTEM_PROMPT),  
	("human", QA_PAIRS_HUMAN_PROMPT)  
])


在QA_PAIRS_HUMAN_PROMPT中我们添加了{text}占位,invoke时需要传入{“text”: “xxx”}。

2.4.2 LLM

大模型的选择非常多,一般的建议是选择长上下文、且能力比你要微调的模型强的模型。这里使用GPT-3.5-16k,代码如下:

llm = AzureChatOpenAI(  
	azure_endpoint=endpoint,  
	deployment_name=deployment_name,  
	openai_api_key=api_key,  
	openai_api_version="2024-02-01",  
)


2.4.3 OutputParser

最后是提取出结果,我们定义结果的Model:

class QaPair(BaseModel):  
	question: str = Field(description='问题内容')  
	answer: str = Field(description='问题的回答')  
	  
  
class QaPairs(BaseModel):  
	qas: List[QaPair] = Field(description='问答对列表')

parser = JsonOutputParser(pydantic_object=QaPairs)


最后将三者连接起来:

chain = prompt | llm | parser


我们把构建chain的操作写成create_chain函数:

def create_chain():  
	prompt = ChatPromptTemplate.from_messages([  
		("system", QA_PAIRS_SYSTEM_PROMPT),  
		("human", QA_PAIRS_HUMAN_PROMPT)  
	])  
	llm = AzureChatOpenAI(  
		azure_endpoint=endpoint,  
		deployment_name=deployment_name,  
		openai_api_key=api_key,  
		openai_api_version="2024-02-01",  
	)  
	parser = JsonOutputParser(pydantic_object=QaPairs)  
	chain = prompt | llm | parser  
	return chain


下面我们可以来试一试效果:

def main():  
	chain = create_chain()  
	documents = split_document('The.Little.Prince.txt')  
	with open(f'dataset.json', 'w', encoding='utf-8') as f:  
	datas = []  
	bar = tqdm(total=len(documents))  
	for idx, doc in enumerate(documents):  
		bar.update(idx + 1)  
		out = chain.invoke({'text': doc.page_content})  
		datas += out  
		f.write(json.dumps(datas, ensure_ascii=False))  
  
  
if __name__ == '__main__':  
	main()


我使用小王子的书作为测试,下面是生成的部分数据集:

[  	{  		"question": "作者小时候看了一本关于什么的书?",  		"answer": "描写原始森林壮观景象的书"  	},  	{  		"question": "这本书上说大蟒蛇通过什么方式来消化食物?",  		"answer": "通过长达六个月的睡眠来消化食物"  	}	...]


我们可以收集同一作者的大量书籍,使用上面的方式构建数据集。在构建过程中,每次执行后,结果可能不一样,因此可以通过多次构建的方式生成更多样本。

三、微调模型

在准备好数据集后,我们就可以进行微调了,我们可以使用已有的项目进行微调,比如LLaMA-Factory就是一个不错的选择。

具体的微调方式可以参考项目文档。

本文选择使用peft模块实现微调操作,其实其它项目也是使用这个项目来完成。先导入必要的模块:

from peft import LoraConfig, TaskType  
from transformers import Trainer  
from datasets import load_dataset  
from transformers import AutoModelForCausalLM, TrainingArguments, AutoTokenizer  
from peft import get_peft_model


3.1 加载模型和配置LoRA

首先需要加载模型以及配置微调模型,我们选择使用LoRA进行微调:

# 配置参数  
peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)  
# 加载模型  
model = AutoModelForCausalLM.from_pretrained(  
	"microsoft/Phi-3-mini-4k-instruct",  
	trust_remote_code=True  
)  
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")  
model = get_peft_model(model, peft_config)  
model.print_trainable_parameters()


3.2 加载数据集

接下来加载我们创建的数据集:

def tokenize_function(example):  
	encoded = tokenizer(
		example['question'], 
		truncation=True, 
		padding='max_length', 
		max_length=128
	)  
	encoded["labels"] = tokenizer(
		example["answer"], 
		truncation=True, 
		padding="max_length", 
		max_length=128
	)["input_ids"]  
	return encoded

# 加载数据集  
data_files = {"train": "train.json", "validation": "train.json"}  
dataset = load_dataset('./dataset', data_files=data_files)  
tokenized_dataset = dataset.map(tokenize_function, batched=True)


3.3 配置训练参数并训练

接下来配置训练参数开始训练:

training_args = TrainingArguments(  
	output_dir="outputs",  
	learning_rate=1e-3,  
	per_device_train_batch_size=4,  
	per_device_eval_batch_size=4,  
	num_train_epochs=2,  
	weight_decay=0.01,  
	evaluation_strategy="epoch",  
	save_strategy="epoch",  
	load_best_model_at_end=True,  
)  
trainer = Trainer(  
	model=model,  
	args=training_args,  
	train_dataset=tokenized_dataset["train"],  
	eval_dataset=tokenized_dataset["validation"],  
	tokenizer=tokenizer,  
)  
  
trainer.train()  
model.save_pretrained("outputs")


我们可以根据硬件情况调整per_device_train_batch_size和per_device_eval_batch_size。现在只需要运行代码,等待片刻即可训练完成。

四、推理

接下来我们要做的就是推理了。LoRA是一个旁支网络,我们需要在原有的模型上,添加LoRA,添加方式如下:

model.load_adapter('outputs', adapter_name='lora01')  
model.set_adapter("lora01")


调用上面代码后,model的推理操作就是添加LoRA后的推理。推理的完整代码如下:

from transformers import AutoModelForCausalLM, AutoTokenizer  
  
model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct")  
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")  
  
model = model.to("cuda")  
model.load_adapter('outputs', adapter_name='lora01')  
model.set_adapter("lora01")  
model.eval()  
inputs = tokenizer("作者小时候看了一本关于什么的书?", return_tensors="pt")  
  
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50)  
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])


最后我们可以和使用正常的AutoModelForCausalLM模型一样使用微调后的模型。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

  • 13
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值