from torch import nn
import torch.nn.functional as f
class SimpleNet(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(SimpleNet, self).__init__()
self.layer1 = nn.Linear(in_dim, n_hidden_1)
self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
self.layer3 = nn.Linear(n_hidden_2, out_dim)
def forward(self, x):
x = self.layer1(x)
x = f.relu(x)
x = self.layer2(x)
x = f.relu(x)
x = self.layer3(x)
return x
model = SimpleNet(28 * 28, 300, 100, 10)
for layer in model.modules():
if isinstance(layer, nn.Linear):
print(layer.weight)
print(layer.bias)