这篇论文介绍了一种名为“多图多智能体递归检索”(Multi-Graph Multi-Agent Recursive Retrieval,简称RAG)的新方法,用于处理复杂法律文档的检索任务。传统的法律文档检索方式面临诸多挑战,尤其是在处理长文本和跨条款、跨文档的依赖关系时。本文提出的RAG方法通过多层次的图结构和多个智能体协同工作,有效提高了检索的效率和准确性。开源代码:https://github.com/whyhow-ai/recursive-retrieval
1. 研究背景与动机
法律文本具有高度复杂的结构(朱导:医学文本同样如此,存在很多内生性关系),不同条款之间存在跨文本和跨章节的引用与依赖关系。对于法律专业人士来说,快速准确地找到相关的法律条款、判例或规定是一项具有挑战性的任务。传统的基于关键词的检索方法难以捕捉这些复杂的依赖关系,导致检索结果往往不准确或不完全。
论文作者提出了一种新方法来解决这一问题,通过引入多图结构和多智能体系统,使得系统能够以递归的方式检索相关条款。这种方法特别适用于处理法律文本中存在的复杂语义依赖,例如引用条款、跨文档依赖关系等。
2. 系统架构
论文提出的RAG方法由两个核心组件组成:多图结构和多智能体系统。
-
多图结构:该系统将法律文档的各个部分(如章节、条款、条文等)表示为图中的节点,不同条款之间的引用关系或依赖关系用边连接。图结构能够有效地表示法律文本的层次性和复杂的依赖关系,使得系统可以通过遍历图来递归检索相关信息。
-
多智能体系统:智能体(Agent)是系统中执行特定检索任务的独立单元。每个智能体负责检索法律文档的一个特定部分,并与其他智能体协作,通过递归的方式寻找与当前检索内容相关的其他条款或文档。智能体之间通过共享信息来协调工作,从而提高检索效率。
3. 递归检索机制
递归检索是该方法的核心。在系统开始检索时,首先从用户的查询出发,智能体会在图结构中找到与查询相关的条款。接着,智能体基于这些初步检索到的条款,进一步检索与其有引用或依赖关系的其他条款或文档。这个过程是递归的,直到所有相关条款都被检索到。
这一递归过程能够有效地处理语义上的复杂依赖关系,避免了传统基于关键词匹配的检索方法中常见的语义缺失问题。对于法律文档中常见的引用条款和跨文档引用,递归检索能够逐层深入,找到与查询条款相关的所有信息。
4. 技术实现
论文中详细描述了该系统的技术实现细节。首先,法律文档被预处理为图结构,其中节点代表文档中的条款或章节,边表示不同条款之间的关系。这一图结构能够高效地存储和表达法律文档的复杂结构。
智能体系统通过并行计算,能够在大规模法律文档上进行高效的递归检索。每个智能体在检索过程中都会生成部分结果,并与其他智能体共享这些结果,最终形成完整的检索结果集。
5. 实验验证
为了验证该方法的有效性,论文中设计了一系列实验,比较了RAG方法与传统的法律文档检索方法的性能。实验结果显示,RAG方法在检索准确率和效率方面都显著优于传统方法,尤其是在处理长文档和跨条款依赖的检索任务中表现突出。
具体来说,在实验中,RAG方法能够在短时间内完成对复杂法律文档的递归检索,返回的结果不仅包含了直接相关的条款,还能够递归检索到与这些条款有引用关系的其他条款。此外,实验还表明,RAG方法在跨文档检索任务中也表现出色,能够有效处理多个文档之间的复杂依赖关系。
6. 应用场景
该系统特别适用于多个法律场景,包括但不限于:
-
合同审查:在合同审查过程中,律师需要迅速找到合同中可能相互依赖的条款,避免潜在的法律风险。RAG系统能够通过递归检索,帮助律师快速发现与某一条款相关的其他合同条款,提高审查效率。
-
判例检索:在判例法系统中,法官和律师需要检索与案件相关的先例判决。RAG系统能够通过递归方式检索到与当前案件相关的先例,并递归发现这些先例中引用的其他判决,从而帮助法律专业人士做出更加全面的判断。
-
法规合规性分析:在法规合规性审查中,企业需要确认其行为是否符合相关法律法规。RAG系统能够快速检索到与某一法规条款相关的所有规定和条款,帮助企业进行合规性分析。
7. 未来工作与发展方向
尽管该系统已经在实验中展示了其强大的检索能力,但论文作者也指出了未来可能的改进方向。例如,智能体的优化算法、图结构的扩展以及更复杂的跨领域文档处理都是未来研究的重点方向。
此外,随着法律文档数量的持续增长,如何进一步提高系统的扩展性和实时性也是未来研究中的关键挑战。通过引入更多的自然语言处理技术和机器学习算法,未来的系统可能会在理解法律条款的语义和上下文方面有更大的突破。
结论
总体而言,本文提出的“多图多智能体递归检索”方法通过结合图结构和多智能体系统,解决了传统法律文档检索方法中的诸多瓶颈,特别是在处理复杂的法律条款依赖关系时展现了其优势。该系统的递归检索机制能够有效提升检索的准确性和效率,在法律合同审查、判例检索、法规合规性分析等场景中具有广泛的应用前景。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓