一、特质波动率和月度特质波动率
采用OLS回归法来提取特质波动率
OLS回归法是
利用取Fama-French的五因子模型提取
其中
yi,t表示第i只股票第t
日的相对于无风险利率的超额收益率(=考虑现金红利再投资的日个股回报率-无风险利率
)
无风险利率采用日化的一年期存款利率
rMKT,t表示第t日市场组合相对于无风
险利率的超额收益率(即市场因子)(=考虑现金红利再投资的综合日市场回报率流通市值
加权平均法-无风险利率)
SMBt,τ表示公司的规模因子
HMLt,τ表示公司的
账面市值比因子(即价值因素)
CMAt,τ表示公司的投资因子
RMWt,τ表示公
司的盈利因子
βMKT,i,βSMB,i,βHML,i,βCMA,i,βRMW,
i分别是五个因素的回归系数
用εi,t的标准差作为特质波动率的度量指标
Ivo
l1i=std(εi,t)
(2)
每个股票的月度特质波动率数据可以
通过下面的式(3)由日度数据得到,即
Ivol2i,k=√Nstd(εi,t)
(3)
√N指的是根号N
其中
Ivol2i,k表示第i个股票在第k月的月特
质波动率
N为第k月股票i正常交易的交易日数目(如果正常交易的交易日数目不足这个
月总交易日天数的80%,该股票在这个月将不会纳入研究范畴)。
样本选择:全部A
股1994-2023年数据(“五因子模型指标日”在数据库中是从1994-01-0
3开始,所以数据起点为1994年)
每个压缩包都附有初始数据,计算代码,参考文献
和最终数据
[1]熊和平,刘京军,杨伊君,周靖明.中国股票市场存在特质波动率之
谜吗?——基于分位数回归模型的实证分析[J].管理科学学报,2018,21(12
):37-5
3.
[2]陆静,张银盈.“特质波动率之谜”与估计模型有关吗?[J]
.中国管理科学,2022,30(09):36-4
8.
[3]赵胜民,刘笑天.特质风
险、投资者偏好与股票收益——基于前景理论视角的分析[J].管理科学学报,2020
,23(03):100-11
5.
[4]赵胜民,刘笑天.公司特质风险、估值水平与
股票收益——基于分位数Fama-MacBeth回归模型的实证分析[J].华东经济
管理,2017,31(09):35-4
4.
压缩包所含文件:
数据样例:
分年度数据量统计:
描述性统计结果:
二、特质波动率和年度特质波
动率
与上述计算说明相同
如果正常交易的交易日数目不足这一年总交易日天数的50%
,该股票在这一年将不会纳入研究范畴
注:提供了剔除所需数据和剔除代码,若无需做该
项剔除处理,自行删除相关代码重新运行即可
参考文献:
[1]李松,王玉峰.短期债
务与股价特质波动[J].商业研究,2021(02):56-6
4.
压缩包所含文
件:
数据样例:
分年份数据量统计:
描述性统计结果:
下载链接:https://download.csdn.net/download/weixin_45892228/89105579点击下载:1994-2023年特质波动率、月度特质波动率和年度特质波动率,五因素/五因子