为什么最近的文章开头总带点"前情回顾"?我们认为单篇只是知识点碎片,串起来才能成为体系。因此希望用"连续剧思维"输出好内容,把文章做成一部"追更"式知识连续剧,让新老读者们每次阅读都能收获新知识。
好了,废话不多说!我们今天来聊聊AI病理大模型,通过一篇最新的综述来系统的梳理病理基础模型的技术演进与未来突破方向。
来自港中文的这篇综述文章提供了计算病理学中病理基础模型(PFMs)的全面分析,从模型范畴、预训练方法和设计架构三大维度进行自上而下的梳理,又从评估任务划分为切片级、区块级、多模态和生物学任务。我们准备整理一个关于病理基础模型(PFMs)及病理视觉-语言模型(LVLMs)的仓库,地址如下:
https://github.com/315386775/Awesome-WSI-LVLMs
一、AI病理基础模型全面分析
计算病理学对全切片图像(WSIs)的计算分析日益重要。针对千兆像素级WSIs,多示例学习(MIL)已成为标准框架,而MIL性能取决于两个核心组件:预训练特征提取器和特征聚合器。
传统深度学习方法只能采用ImageNet预训练的ResNet-50作为提取器,但难以处理病理图像特有的微小色差、旋转无关性、组织层级结构等特征。病理基础模型,如HIPT和UNI通过在大量病理数据上预训练获得跨任务泛化能力,标志着MIL范式的革新。
如上图所示,从模型范畴、预训练方法和设计架构对 PFM 进行系统比较。
1. 模型范畴部分:特征提取器 (E.)、特征聚合器(A.)
将病理基础模型分为提取器中心型、聚合器中心型和混合中心型三类,提取器中心型是当前PFM开发的主流范式,代表工作有UNI、MUSK等,其优势源于两个核心因素:高质量特征的重要性,以及解决ImageNet预训练CNN带来的领域偏移需求。另外有一些面向聚合器中心型,代表的工作有CHIEF、TITAN等;
2. 预训练方法:输入H&E染色 (H)、文本 (T)、未指定染色 (W)、IHC染色 (I)、基因组学 (G)、DNA (D) 和 RNA (R)、扫描倍率(Mag)
预训练方法 SSL 可分为两大类:纯视觉方法和多模态方法。纯视觉方法采用三种 SSL 技术:对比学习 (SimCLR、MoCov3)、蒙版图像建模 (MIM、MAE) 和自蒸馏 (iBOT、DINO、DINOv2)。相比之下,多模态方法通常采用多阶段预训练,利用对比学习方法 (CLIP、CoCa) 进行有效的跨模态对齐,在此之前,单模态编码器需要单独进行预训练。从上述中可以看到基本采用224的分辨率在DINOv2上进行预训练。
3. 设计架构:
参考了三个对模型性能至关重要的方面:架构、参数数量、规模。模型的规模直接由其参数数量决定。通过量化参数数量,建立了一个分层的规模系统,促进标准化的跨架构比较,并为实际实现提供明智的模型选择。
二、AI病理基础模型评估任务
开发与评估构成PFM的两大支柱,系统化评估分为四类:
-
切片级任务:包括WSI分类(Cls.)、生存预测(Surv.)、检索(Retri.)和分割(Seg.)是计算病理学核心;
-
区块级任务:评估特征提取器效能的独立任务,含区块分类(Cls.)、区块间检索(P2P)和分割(Seg.);
-
多模态任务:评估跨模态能力,包括图文互检索(I2T/T2I)、报告生成(RG)和视觉问答(VQA),反映病理决策的多模态整合需求;
-
生物学任务:聚焦生物标志物检测,含基因变异(GA)和分子预测(MP),其临床价值使其成为独立评估维度;
三、AI病理基础模型的未来方向
根据上述模型的信息,我们可以发现现有基础模型多直接套用自然图像技术,仍需开发专属算法处理病理图像特性;
其次是端到端预训练的缺陷:当前两阶段范式(先提取器后冻结聚合器)导致优化困难,亟需能整合千兆像素图像全局/局部信息的高效架构;
然后就是老生常谈的模型鲁棒性:需克服多机构数据在扫描设备、染色协议等技术差异导致的训练不稳定;
最后是采用RAG技术增强病理视觉语言模型:结合LLMs与ViT架构,超越现有方法的局限!
随着大模型技术的发展,AI病理大模型的真正落地是否已经到来了呢?你又知道哪些国内靠谱的病理AI大模型的工作呢?欢迎留言区讨论!
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓