哈佛大学研究团队提出了一种用于病理学的多模态全切片基础模型——TITAN,其通过在大量组织切片图像(WSIs)上的自监督学习和视觉语言对齐预训练,能生成强大的通用切片表示,在多种临床任务中表现优异,为病理学研究和临床诊断提供了有力工具。
AI病理学领域因基础模型的发展而发生了变革,这些模型通过自监督学习(SSL)将组织病理学感兴趣区(ROIs)编码为多功能且可迁移的特征表示。然而,将这些进展应用于解决患者和切片层面的复杂临床挑战仍受到疾病特异性队列中临床数据有限的制约,尤其是对于罕见的临床状况。因此,哈佛大学研究团队提出了TITAN模型,尝试解决这些问题。
PART ONE
TITAN模型概述
哈佛大学研究团队最近提出了新型多模态基础模型TITAN,用于将整个WSIs图像编码成WSI级别的通用特征表示。
通过视觉自监督学习和视觉-语言对齐以及从病理报告和多模态生成AI助手生成的423,122个合成标题进行预训练,共使用了335,645个WSIs。其中包括苏木精-伊红染色(90.9%)和免疫组化染色组织切片(9.1%),以及肿瘤(70.0%)和非肿瘤组织切片(30.0%)。并使用了超过182,000份病理报告以及由PathChat(点击查看何为PathChat?)生成的超过423,000个合成字幕。无需任何微调或临床标签,TITAN能够提取通用目的的切片表示,并生成在资源有限临床场景下,如罕见疾病检索和癌症预后,具有泛化能力的病理报告。
在多样化的临床任务上对TITAN进行了评估,发现TITAN在机器学习设置中,如线性探测、少样本和零样本分类、罕见癌症检索和跨模态检索,以及病理报告生成等方面,均优于基于ROIs和切片的基础模型。
PART TWO
TITAN模型数据、架构及评估
模型数据
总切片数量: 335,645张
主要器官及其切片数量:
肺 (Lung): 77,332张,占比23.3%
肠道/下消化道 (Bowel / Lower GI): 27,677张,占比9.9%
脑 (Brain): 22,581张,占比6.7%
肾 (Kidney): 21,395张,占比6.3%
乳腺 (Breast): 19,006张,占比5.6%
呼吸系统 (Ephragmatic system): 18,336张,占比5.5%
女性生殖系统 (Female genital tract): 17,296张,占比5.4%
肝胆道 (Liver biliary tract): 15,154张,占比4.7%
软组织 (Soft tissue): 15,154张,占比4.6%
心脏 (Heart): 14,256张,占比4.4%
内分泌系统 (Endocrine): 11,779张,占比3.7%
皮肤 (Skin): 10,179张,占比3.6%
男性生殖系统 (Male genital tract): 9,054张,占比2.7%
骨 (Bone): 8,352张,占比2.3%
头颈部 (Head & Neck): 8,301张,占比2.2%
胰腺 (Pancreas): 7,966张,占比2.2%
膀胱 (Bladder): 7,966张,占比2.0%
腹膜 (Peritoneum): 7,966张,占比1.5%
眼 (Eye): 5,581张,占比1.4%
未知 (Unknown): 11,779张,占比3.3%
模型架构
预训练策略包括三个不同的阶段,以确保生成的WSI级表示能够在ROI级和WSI级捕获组织形态学语义,同时借助视觉和语言监督信号。TITAN使用视觉变换器将WSI图像编码成特征嵌入。
(全局的视图对应经过核验的病理报告,局部视图则由PathChat模型进行解读,并给出相应的文字描述。)
第一阶段是仅视觉的单模态预训练,使用Mass-340K对ROI裁剪进行预训练;
第二阶段是在ROI级生成形态学描述的跨模态对齐(423K对8K×8K ROIs和标题);
第三阶段是在WSI级进行跨模态对齐(183K对WSIs和临床报告)。
模型评估
区域和切片诊断能力提升:
在多种病理任务(如形态分型、分子分类、生存预测)上,TITAN及变体优于其他模型,随预训练数据增加性能提升,在少样本数据效率实验表现佳,消融实验揭示各设计选择(如位置编码、层数、预训练策略)对性能影响及模型优势。
语言对齐能力:
在零样本分类任务中,TITAN在多类和二分类任务上远超PRISM;报告生成任务中,其生成报告质量指标远超PRISM,体现良好语言理解与生成能力及视觉语言对齐优势。
检索能力:
在罕见癌症检索和交叉模态检索任务中,TITAN及变体在准确率和召回率上优于其他模型,能有效检索相似切片和报告,辅助临床诊断决策。
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
路线图很大就不一一展示了 (文末领取)
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
👉GitHub海量高星开源项目👈
💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告(持续更新)👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓