DeepSeek+Dify构建知识库、聊天助手、Agent(智能体)、工作流
在我第一篇关于AI的文章中《[【AI】初体验AI大模型应用平台]》,我有简单提到Dify,那个时候对于Dify的理解是一款大语言模型的应用开发平台,就是类似一个微信的小程序开发平台,每个个体,每个公司都可以在上面开发属于自己的应用。最近深入了解之后,又对其有了更进一步的理解。
昨天看到一个网友说"不会使用DeepSeek,那么这东西到普通人手里,就是百度Plus版",这么说也不无道理。为什么DeepSeek会掀起这么大的浪潮,是因为过去我们想实现的很多事情都要基于机器对自然语言的理解,比如机器人发展了很久,现在有了机器狗、人形机器人,但还是需要遥控去控制,而不具备自主思维。再比如刚出来的Gpt、文心一言,更像是拼凑起来的文字,具有浓重的程序化风格。
DeepSeek的优势就在于其推理模型,能够从用户角度出发,分析用户为什么提出这个问题,用户需要达成什么样的目标,以及在回答过程中需要注意什么。这就给很多领域提供了AI驱动的能力,比如散户也可以拥有属于自己的股票分析专家,公司可以基于DeepSeek将传统业务升级为AI驱动,用户只需要一句话就可以得到想要的结果,即使不能做到百分百满意,那也在效率提升上做到了突破。
今天的这篇文章之所以说这么多,是为了交代背景,个人如何深度利用包括DeepSeek在内的AI工具,如何使用构建自己的聊天助手、智能体、工作流来提升工作效率。接下来我将会用系列文章教会你深度利用AI。
DeepSeek
DeepSeek大家已经非常了解了,如果不是很清楚,也可以参考我之前的几篇文章做个了解,链接给大家贴在这里了
Dify
Dify平台简单来说,就是一个让普通人无需编程就能快速搭建职能助手或自动化流程的AI工具平台,像拼积木一样简单。Dify平台能够整合知识库、AI模型和工具,自动处理复杂任务(如回答咨询、分析数据),并像人一样学习和优化效果。
1、Dify的部署
Dify支持Linux或MacOS,Windows用户可能需要使用WSL(Windows Subsystem for Linux)。如果大家没有编程能力或者linux环境的话,我也给大家提供了一个我自己在虚拟机上部署的镜像,里面已经用Docker安装了Dify和DeepSeek,大家可以下载下,将镜像导入到虚拟机中即可使用,链接我就放在文末了。
2、Dify的主要功能
》》探索页面
探索页面是展示Dify中内置的一些能力,有助手、写作、编程、人力资源等方面的智能体、工作流、聊天助手。当自己对于Dify无从下手时,可以使用这些能力先试试看。
Dify-探索
》》工作室
工作室中包括了聊天助手、Agent、工作流,可以在工作室中根据自己的需求创建相关应用。后面会对该功能做详细解释
Dify-工作室
》》知识库
知识库中可以上传个人或企业的文件,上传之后如果设置了嵌入向量模型,会将文本转换为向量数据,用于后续相似性检索。
Dify-知识库
》》工具
Dify的工具是指一些让AI调用外部功能的插件,比如搜索、发微信或者查询数据,就像给AI装上手和脚,能自动执行现实任务。也可以自定义工具给Dify调用,或者将已发布的工作流发布成工具进行使用。
Dify-工具
知识库
知识库是存储企业或个人资料的数据仓库,用于辅助AI精准回答专业问题。原理是将文档拆分、向量化存储,通过检索匹配用户问题,结合大模型生成可靠答案。
1、创建知识库
2、选择数据源
数据源可选导入已有文本、同步自Notion内容、同步自Web站点(暂未上线)
导入已有文本:即你需要作为外部知识让大模型去检索回答的内容,可能是个商业计划模板、也可能是个销售数据表。
同步自Notion内容:Notion是一款团队协作工具,类似于钉钉文档、语雀文档等,可以在其中以高度自定义的方式组织工作、管理项目和存储信息。也有提供API给其他应用调用。这里就是Dify对接了Notion,可以从Notion中导入信息到知识库中
3、文本分段与清洗
此步骤主要是对上传的文档进行分段以及向量转换
4、处理并完成
此步骤可以修改知识库名称
5、查看文档
在列表中可以查看刚刚上传的文档,如果文件比较大,状态可能还是“索引中”,正常是“可用”,右侧也可以进行分段设置、归档等操作。
6、召回测试
》》向量检索
上传文档之后我们可以在召回测试窗口问个问题,已测试下命中率吧。我根据文档内容问了“DeepSeek是什么?”,并以向量检索的方式进行检索,命中三个分段
如果我问一个不相关的问题,通过向量检索的方式也是可以找到的,但实际结果可能没那么理想
》》全文检索
当我切换为全文检索时,其搜索效果竟然更准确
》》混合检索
混合检索需要设置一个重排序模型,如果本地没有安装的话,可以选择使用jina的API。
选择添加之后会跳出一个弹窗,可以点击“从Jina获取API Key”
进入官网,无需注册登录,点击API
查看API密钥
复制填充即可
设置完成,等几秒钟加载即可,点击保存
查看结果
使用混合检索,查询出来的结果相对精确一些,经过重排序模型排序之后,结果会以相似度排序展示。
PS:一般来说向量检索的结果会更加精确,但我测试的结果却不是(这也证明我不是AI写的文章,纯真实纯手写)我觉得应该是我材料数量比较少导致的,大家可以多试试
这时候知识库已经设置好了,知识库可以在之后的应用中进行引用。
聊天助手
聊天助手是直接和用户对话的AI,通过大模型理解问题并生成回复。原理是实时调用AI模型分析上下文,用自然语言交互解决咨询、问答等需求。
输入应用名称,点击创建
》》编排
进入编排页面
既然我们是聊天机器人,先设置一个开场白,点击开启,我是设置成了“欢迎来到DeepSeek的世界”
设置知识库为上下文
记得点击右上角的更新、发布,否则修改将不会生效
我们来问下“DeepSeek是什么”,回答就是基于知识库来的
可以根据知识库中的测试来验证下
》》访问API
当我们配置完成之后,可以通过API嵌入到应用中
API使用需要密钥,右上角创建即可
》》日志与标注
日志记录了应用的运行情况
》》概览
概览就是看下API的使用情况
至此,聊天助手算是基本创建完成,需要更完整的能力,就需要你来自己尝试下了。
Agent(智能体或智能代理)
Agent是能自动处理复杂任务的AI助手,比如查数据或操作其他软件。原理是预设规则或学习用户目标,拆解任务后调用工具(搜索、API)自主完成
输入应用名称,点击创建
》》编排
输入提示词,即你希望这个智能体帮你完成什么任务
选择工具,智能体就是让AI使用工具完成任务的具体存在,所以会有很多工具可选
当然,如果你懂编程,也可以自定义工具
选择完工具,点击右上角的更新发布即可完成
我们来测试下吧,我创建的是个股票分析智能体,我问了下“大前天苹果的股价情况”
思考的过程中会发现已经在使用工具,时间工具和股票分析工具
哎,你猜怎么着,它没回答出来,不管它了,我的电脑也就这样了,只要大概的流程说清楚就行
》》访问API、日志与标注、概览
功能相似,不做过多介绍
工作流
工作流是把多个AI步骤串联起来的自动化流水线,比如先分类再生成内容。原理是用可视化流程编排不同工具和模型,按顺序执行任务,像工厂流水线一样协作。
选择工作流,输入应用名称,点击创建即可
》》编排
默认进来展示开始节点和下一节点选择
在开始节点设置下变量,也就是我们要进行对话,工作流需要接收到我们问的内容,需要有个参数来接收
这里我选择段落,因为文本的字数有限,段落字数默认最大33024,命名为message
第二个节点选择知识检索,引入我们创建的知识库
知识库检索的内容将会作为输出变量输出,同时也会作为输入变量被下一节点使用
第三个节点选择大语言模型LLM,需要切换模型至deepseek
LLM中接收上一节点的输出参数,并设置提示词
LLM的输出参数也将作为输入参数被下一节点使用
最后的节点选择结束节点
选择大模型输出的变量即可
点击右上角的更新、发布,再点击运行
输入“DeepSeek是什么”,将会根据知识库信息进行返回
我们通过知识库中的分段信息确认下其是否使用知识库回答
》》访问API
Dify提供了对应的工作流API,可以嵌入到应用中进行使用,方法与前面介绍的聊天助手相似
》》日志及概览
日志和概览也都是对API的监控,不做过多介绍
至此,工作流也介绍完了
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓