DeepSeek大模型微调实战:保姆级全流程指南

第一步 Python环境准备

peft transformers datasets torch accelerate bitsandbytes

具体请见文件 requirements.txt 上方下载↑↑↑

第二步 构造数据集

本文数据使用.jsonl文件。数据为拟造,仅供试验

1.每一行数据为一个json对象,包含一个问题和一个答案

2.初学者请注意数据的内容并没有格式要求,只要在后续步骤中能够处理成训练数据即可

第三步,数据处理

1.加载数据集

2.编写数据格式化逻辑

下图的逻辑是将问题部分作为输入,答案部分作为标签。分词时,句子超过最大长度限制时就截断,不足最大长度时填充至最大长度,保持所有句子相同长度则可以Batch化处理:

下图是将问题和答案整体作为输入,自身作为标签:

3.分词

句子需要变成一个个基本单位或者叫做词,即token。分词的核心是在该模型对应的词表中找到每个词的编号,也就是它们的表示。

创建分词器(加载时使用的参数和下文加载模型一样),以及利用上面编写的格式化函数来格式化数据:

第四步,模型加载和量化

加载模型的方式:

1.指定模型名称和缓存位置,如果缓存位置没有模型则从HuggingFace上下载后放到缓存位置,不指定缓存位置则使用默认位置(用户目录下的.cache/huggingface)

2.直接给定一个模型的目录。这种情况一般用在使用自己训练的模型时。见后文加载微调后的模型并使用

第五步,配置LoRA

LoRA帮助我们只训练部分参数。

第六步,配置训练参数

比如学习率、batch_size、lr等等,这些是AI领域最常见的术语。其中图中的output_dir用于存放训练过程中输出的数据,如checkpoint。

第七步,初始化训练器

传入要训练的LoRA模型、训练参数、训练集、验证集、分词器等

第八步,训练及保存

训练:

保存分为两步:

1.保存LoRA模型

2.利用保存的LoRA模型和DeepSeek基础模型合并成完整模型,并保存

推荐"AI圣经"<<深度学习>>,经典作品值得人手一本~

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### DeepSeek 训练教程 #### 准备工作 为了开始训练DeepSeek模型,首先需要准备必要的环境和资源。这包括下载所需的模型文件以及安装相应的深度学习框架。 对于本地部署版本的操作如下: - **下载模型文件**:可以从Hugging Face获取所需模型。 - **安装深度学习框架**:建议使用PyTorch作为主要的开发工具[^2]。 ```bash pip install torch transformers ``` #### 加载预训练模型 加载并初始化预训练好的DeepSeek模型及其对应的分词器是启动任何进一步处理的第一步操作之一。 ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("deepseek/model-path") model = AutoModel.from_pretrained("deepseek/model-path") inputs = tokenizer("你好,DeepSeek!", return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0])) ``` 这段代码展示了如何通过`transformers`库来加载指定路径下的DeepSeek模型,并对其进行基本测试以验证其功能正常。 #### 开始微调过程 当准备好基础架构之后,可以针对特定任务对模型进行微调。这里提供了一个具体的例子,即在Python编程语言上评估经过指令优化后的DeepSeek Coder性能。 创建一个新的脚本文件`eval_ins.sh`用于执行评估命令,在此之前确保已经进入了正确的目录结构内(例如位于`DeepSeek-coder/Evaluation/Human-eval`下),并将以下内容填入该Shell脚本中: ```shell LANG="python" OUTPUT_DIR="output" MODEL="deepseek-coder-1.3b-instruct" CUDA_VISIBLE_DEVICES=0,1 python eval_instruct.py \ --model "deepseek-ai/$MODEL" \ --output_path "$OUTPUT_DIR/${LANG}.$MODEL.jsonl" \ --language $LANG \ --temp_dir $OUTPUT_DIR ``` 上述脚本设置了一些环境变量,并指定了要使用的GPU设备编号;接着运行了`eval_instruct.py`这个Python程序来进行实际的数据集上的评测工作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值