企业级客户如何选择部署DeepSeek?4条路全解析

2025开年以来,各路行业客户纷纷掀起了DeepSeek部署热潮,各种比学赶帮超…

那么,怎样才能不落人后,快速把DeepSeek投入生产呢?目前看,主要有四种路径↓

采购DeepSeek一体机:

**优点:**本地部署开箱即用;

**缺点:**满血版一次性采购成本较高,蒸馏版则可用度不够,未来模型迭代、算力扩容、系统维护、软硬件升级都受限。

基于原有基础设施部署

**优点:**可利旧,盘活闲置算力,本地化;

**缺点:**模型适配、部署、优化有门槛,推理效果不可控。

基于云端API调用:

**优点:**成本极低,有多家服务商选择灵活,适合尝鲜或测试。

**缺点:**共享算力,容易踩到劣质API的坑,需要一定的甄别能力。

基于公有云AI Infra部署模型:

**优点:**成本低,部署快,模型独享,安全有保障,模型可持续优化迭代、定制。

**缺点:**数据要出域,不适用于有强合规需求的场景,同时需要评估各家云服务商的能力。

这么说吧,四种方案各有优缺点,没有一种方案可以满足所有类型的客户需求。

不过我们需要明确一点的是,虽然DeepSeek很牛,但是我们仍然处在“大模型应用的初级阶段”。

在这个档口,无论小型企业还是大中型企业,都应该小步快跑、持续迭代,而不是想着一步到位。

因此,对于小微企业,首选方案❸,能够以极小的投入,快速赋能业务,吃到大模型红利。

对于成长型、大中型企业,首选方案❹,既可以快速切入,又可以满足未来的规模化应用、模型迭代与定制、模型的专属性以及安全性。

具体怎么选呢?

无论是方案❸调用API,还是方案❹云上自助部署,我们都推荐字节跳动旗下的**「火山引擎」**。

先看方案API云端调用的场景,目前能够提供DeepSeek API服务多达几十家,但接口的性能、延迟、稳定性却大不相同。

这些因素,都将直接影响DeepSeek最终体验。

而目前,从各类第三方评测机构的数据看,API接口性能、稳定性,火山全面领先。

下面我们节选了来自国内知名拨测平台基调听云的测评结果,包括火山引擎、DeepSeek官方在内的五大API。

其中,火山引擎(火山方舟)提供的DeepSeek API接口,在平均速度、推理速度、生成速度上均表现最优,且首tokens延迟最低。

不仅如此,根据该评测报告,火山引擎API接口稳定性高达99.83%。

无独有偶,国内另一家中文大模型评测机构superCLUE也发布了各家API的测评结果,火山引擎在完整回复率、准确率、输出速率等均处于领先地位。

同时,火山引擎的火山方舟平台,提供高达500万TPM的全网最高初始限流,以及超过50亿的初始离线TPD配额。

同样的,再看方案云上部署模型的场景

首先,API服务的性能和稳定性,已经从侧面证明了火山引擎AI Infra的实力,没有好的底座,上层服务再“妖娆”,也是空中楼阁。

更重要的是,火山引擎为大模型上云,做好了一系列准备↓

一、丰富的GPU云主机机型,支持各种尺寸模型。

火山引擎可以提供24G、48G、80G、96G等多种显存规格的计算实例,单机最大可支持768G显存,满足满血版DeepSeek R1/V3模型的部署。

同时,火山引擎提供成熟的高性能多机互联集群,跨计算节点可提供高达3.2Tbps的无损互联带宽。

通过扩展高性能集群,可以满足更大规模的并发推理需求。

二、模型部署与推理全栈加速

大模型的推理服务,并不是你显卡够牛、显存够大就完事OK了,更需要端到端的全栈优化加速。

火山引擎从底层的IaaS、PaaS再到上层的机器学习平台、火山方舟API调用,每个对应的层级都有针对性的优化,从而系统化、立体化地支撑DeepSeek快速部署与推理服务‍

这里面有些独门黑科技,我们单拎出来说——

支持PD分离架构:

Transformer架构大模型干活的过程,可以分为两步:并行处理的Prefill阶段和串行处理的Decode阶段

Prefill阶段可以一次性算完,而Decode阶段每生成一个新token,都要依赖前面的结果,串行输出,速度天然慢。

这两个阶段对算力的要求其实是不一样的。如果把PD混在一起跑,效率会大打折扣,而PD分离就可以提升效率、节省资源、优化延迟。

举个通俗的例子:不分离像是你边看菜谱边炒菜,PD分离是先把菜谱背熟(Prefill),然后专心炒(Decode),效率高到飞起。

这下明白PD分离的重要性了吧。

而火山引擎是国内公有云平台中,最先支持DeepSeek PD分离的,对于P和D阶段用什么卡、比例多少,可以为用户提供最佳实践。

客户只需选择平台预置的模型文件、支持自研xLLM推理引擎的环境镜像、推理算力,即可一键完成DeepSeek R1满血版PD分离集群化部署,最高推理吞吐提升5倍。

自研vRDMA网络,大幅提升互联效率:

火山引擎自研vRDMA网络,具备国内首创的基于标准RoCE v2协议的vRDMA能力,可以低门槛的、无侵入式的支撑各种AI框架和软件栈。

有了强大的网络支撑,各种PD分离计算、跨池计算、算存互联的效率可以大大提升,整体通信性能提升最高达80%,时延降低超过70%。

KV Cache优化:

KV Cache可以有效加速推理速度,但也会吃掉更多的内存和显存(尤其超长序列任务)。

为此,火山引擎提供弹性极速缓存产品,专门针对大模型推理所需的KV-Cache进行优化,通过多级缓存、GDR零拷贝等手段,使推理时延降低至1/50,GPU开销降低20%。

自研推理加速引擎xLLM:

火山引擎提供自研推理加速引擎xLLM,提升大模型推理性能100%以上,同时还支持SGlang和vLLM开源引擎,为大家提供更多灵活选择。

三、模型调优与一站式模型定制

云上部署大模型的优势,不仅仅是企业可以独享模型,更重要的是可以进行按需调优和定制。

在火山引擎部署DeepSeek,可以使用其机器学习平台进行全尺寸模型调优服务。

同时,火山引擎还提供了高性能自研模型蒸馏框架veTuner、强化学习框架veRL,以及训推一体、任务优先级调度和故障自愈能力。

用户可以在自己的专属VPC网络中,基于推理形成的业务数据,进行模型蒸馏、强化学习…

整套方案也可以基于火山引擎混合云,适配本地/云上混合部署。

如此,企业级客户最希望的模型调优和定制需求,都可以一站式搞定。

四、长期技术驱动打造极致性价比

以目前最热门的、支持满血版DeepSeek部署的8卡GPU云服务器(显存96G×8)为例,火山引擎在市场上做到了价格最优。

凭啥火山引擎能做到更优的价格?其实是长期技术驱动打造出极致性价比。

首先是资源成本被“摊薄”了,字节系抖音、今日头条等多个头部业务拥有海量的算力资源池,在内外统一的云原生基础架构加持下,火山引擎与字节跳动国内业务实现资源并池。

凭借规模优势和自研服务器能力,火山引擎把机器资源的采购、生产、规模化运营成本都降到业界极低的水平。

同时,通过“削峰填谷”的极致调度能力,字节跳动国内业务的空闲计算资源可以极速调度到火山引擎,分钟级调度10万核CPU、上千卡GPU的资源量,并通过抢占式实例和弹性预约实例,做到GPU资源潮汐复用。

五、安全性与稳定性

火山引擎自研大模型应用防火墙,具备强大的 All in One 安全防护能力,可为云上部署DeepSeek保障企业级生产流量稳定吞吐和全栈保护。

除此之外,火山引擎的云上模型服务,还增加了各种高可用机制(可观测性、检测与恢复),从而提供超强的稳定性。

这一点,大家看前面的API稳定性测试报告,心中就有谱了吧。

还有一点,针对部分客户对一体机模式的“偏爱”,火山引擎也没有让大家失望:AI一体机DeepSeek版闪亮登场!

火山引擎AI一体机支持DeepSeek R1/V3全系列模型、HiAgent AI应用创新平台、大模型防火墙以及轻量模型训练平台,涵盖模型部署、管理、推理、微调、蒸馏以及AI应用开发等全链路能力。

好了,我们总结一下↓

小微企业、个人开发者轻量应用选API调用,大中型企业重度应用、定制选云上部署,一体机“铁粉”们,当然也可以选择一体机开箱即用

无论哪种选择,火山引擎AI云原生,都是AI时代云基础设施的最优解。

还想了解更多信息?您可以扫描加入「火山引擎官方大模型技术交流群」,与大模型研发、算法、产品、服务等同学交流互动。

也可以点击阅读原文,前往火山方舟免费体验DeepSeek R1满血版↙

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### DeepSeek 私有云部署教程 #### 准备工作 为了在私有云环境中成功部署DeepSeek并构建企业级知识库,需准备如下环境和资源[^1]: - 支持Docker和Kubernetes的服务器集群。 - 已安装配置好Python 3.8以上版本以及pip工具。 #### 部署流程 通过命令行操作完成必要的软件包下载与初始化设置。具体来说,在目标机器上执行以下指令可以获取最新的DeepSeek镜像文件,并启动服务容器: ```bash docker pull deepseekai/deepseek:v3-latest docker run -d --name=deepseek-server -p 8080:8080 deepseekai/deepseek:v3-latest ``` 上述命令会拉取官方提供的最新版DeepSeek Docker镜像,并创建名为`deepseek-server`的服务实例,端口映射设定为外部访问地址8080对应内部应用监听端口8080。 对于希望进一步定制化的用户而言,则可以通过修改默认参数来自定义更多选项,比如调整内存分配、指定数据存储径等。这些高级功能通常涉及到编辑YAML格式的应用配置文档或是利用Helm Chart进行更复杂的编排管理. #### 构建本地知识库 为了让DeepSeek能够基于用户的私有资料提供更加精准的回答,需要导入预先整理好的结构化或非结构化文本素材至平台内。此过程一般分为两步走:首先是上传原始文件;其次是训练专属的语言理解模型以便更好地解析特定领域术语和技术细节。 ```python from deepseek import KnowledgeBaseManager, DocumentLoader kbm = KnowledgeBaseManager() loader = DocumentLoader() documents = loader.load_from_directory("/path/to/private/docs") kbm.add_documents(documents) model_training_status = kbm.train_custom_model() print(f"Model training finished with status {model_training_status}") ``` 这段代码展示了如何使用DeepSeek SDK中的`KnowledgeBaseManager`类加载自定义文档集合,并对其进行索引处理以供后续查询调用。同时还可以看到有关于个性化NLP模型训练的相关接口调用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值