世人只知Manus,而不知MCP的强大!
What:MCP是什么?
MCP(Model Context Protocol)是由 Anthropic 推出的开放标准协议,它为 AI Agent提供了一种"插件机制",让开发者能够为 AI Agent 中的 LLM 提供强大的自定义工具,实现更加灵活和强大的功能扩展,让 AI Agent 如虎添翼!
简单理解
我们可以把MCP想象成给聪明但"手无缚鸡之力"的AI大脑装上了一双灵巧的手——这双手不仅会干活,还自带万能工具包。
从以前只会动嘴的 AI 参谋,到现在会动手的 AI 执行者。
例如分析一个销售数据:
维度 | 传统AI模式 | MCP增强模式 |
---|---|---|
数据获取 | 人工输入/预加载数据 | 自主对接200+数据源 |
操作执行 | 输出文字指导建议 | 自动化工作流执行 |
结果交付 | 文本/图表输出 | 整理结果文件保存指定位置 |
更关键的是,这双手遵循"标准操作手册":
-
所有工具接口统一
-
操作流程规范明确
-
不同AI都能用同一套方法
这样一来,AI不仅知道"应该做什么",还能真正"动手做到",就像给百科全书式的学霸配上了实验室操作台,让知识真正转化为行动力。
Why:为什么要关注MCP?
强大的功能扩展
MCP 为 AI Agent 带来了强大的功能扩展,简单举几个例子!
可学习:sequential-thinking
https://smithery.ai/server/@smithery-ai/server-sequential-thinking
可以通过 AI 的“深度思考”,教你如何写文章。
可游戏:mcp-minecraft
https://github.com/arjunkmrm/mcp-minecraft
在Minecraft的游戏中,玩家可以通过MCP与游戏中的NPC进行互动。
可工作:21st.dev
https://smithery.ai/server/@21st-dev/magic-mcp
可以通过21st.dev快速创建优雅精美的前端页面。
新的能力和价值
标准化的连接能力
- 打破常规的AI交互模式:只能将上下文通过手动输入或者预加载的模式给到AI,而标准化链接能力之后,将支持各种数据来源,并突破上下文格式和大小的限制。
- 降低了连接的成本:MCP server即插即用,快速且无额外工作量的接入。
繁荣的工具生态基础
- 完整的生态模式:固定标准之后,MCP生态会越来越好,越来越丰富,后面的功能也会越来越全面。
How:怎么使用MCP?
使用流程
以Cursor + Smithery为参考:
-
从Smithery获取MCP命令
-
添加对应的MCP服务器
-
设置你的API密钥
根据你的需求,配置必要的API密钥,OpenAI API密钥(如果使用GPT-4),Anthropic API密钥(如果使用Claude),其他服务的API密钥。
还有哪些Clients
Cursor
https://www.cursor.com
Claude Desktop
https://claude.ai/download
Windsurf
https://codeium.com
Cline
https://cline.bot
还有哪些MCP Servers
Smithery.ai
https://smithery.ai
Glama.ai
https://glama.ai/mcp/servers
Portkey.ai
https://portkey.ai/mcp-servers
MCP.so
https://mcp.so/servers
最后
在这个AI时代,AI也不会完全取代人工,相反,会给人工增加助力,是否会用AI辅助工作将会是区分竞争力水平的核心标准!
不要排斥AI,拥抱AI,掌握AI,提高自己的核心竞争力才是硬道理!
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓