我们正身处一场人工智能革命之中,且其发展势头丝毫未减。但关键在于:仅仅拥有AI工具远远不够。真正的力量在于懂得如何运用它、引导它,并让它为你所用——这正是提示工程的意义所在。
近期谷歌发布了一份69页的白皮书,深入剖析了这项关键技能。通过研读,我发现其中大量观点印证了我在实际工作中的观察。这不仅仅是编写几行文字的技巧,更是掌握一种全新的沟通方式。
今天,我将分享每位创业者、内容创作者和企业管理者都必须理解的5个核心要点。
1.背景和清晰度是不可协商的
人工智能依赖于清晰度。
模糊的提示会导致模糊的结果。
白皮书强调了需要详细的指示、具体的目标和明确定义的参数。
把你的AI当作一个技能高超但有点迷糊的团队成员——你给予的指导越多,输出就越好。
例子:想要一个社交媒体帖子? 不要只说,"写一篇关于我新产品的帖子。"
而应该说,"写一篇LinkedIn帖子宣布我们新项目管理软件'FlowMaster'的发布。目标受众是科技公司的项目经理。强调关键优势:改善团队协作、简化工作流程和提高生产力。使用专业但有吸引力的语调。包含呼吁访问我们的网站进行免费试用的行动号召。关于软件功能和价格的哪些具体细节最有帮助?"
清晰度就是力量。
2.提示工程是新型素养
这不是夸张;这是现实。
白皮书明确指出:提示工程是一项核心技能,就像编码或数据分析一样。
它是关于理解语言、背景,以及如何构建你的请求以从AI获得特定结果。
例子:考虑生成一个营销计划。
新手可能会要求AI"创建一个营销计划。"
专业人士会说,"请以拥有10年科技行业经验的营销顾问身份。为针对小型企业的新SaaS产品制定12个月的营销计划。包括内容营销、社交媒体和电子邮件营销的策略。为了创建最有效的计划,你需要了解我们的预算、目标受众人口统计和产品特性的哪些具体信息?"
这就是提问和引导之间的区别。
这有点长所以我没有截取全部内容。如你所见,上述提示没有包含足够的信息,所以Gemini向我询问更多信息。
这也引出了下一个要点,这是一场对话,关于进行对话,将AI视为创意伙伴。 期望在你完善和提供反馈时迭代结果。
3.这是对话,而非命令
白皮书强调:提示词优化本质是协作过程。
关键在于与AI展开对话式交互,而非单方面下达指令。通过提问优化反馈、根据响应结果持续改进提示词。
实际应用时可分步构建提示词:
本案例揭示如何从基础提示词起步,根据AI反馈逐步完善——在迭代过程中明确受众定位、内容格式及具体要求。
4.示例 > 解释
用展示代替讲述。白皮书强调了"小样本学习"的力量——为AI提供你想要的具体示例。这比单纯描述风格、语气和格式的细微差别,能更有效地帮助AI理解。
示例:需要产品描述?
不要只说:"用有说服力的风格写。"
而应该说:"为这些商品撰写产品描述。参考以下风格示例:'这款手工陶瓷花瓶能为任何房间增添一抹质朴的优雅。''我们的有机棉T恤柔软舒适至极,适合日常穿着。'现在请为[新品]撰写描述。"
技巧:示例是实现一致性的捷径密码。
5. 伦理考量至关重要
我们不能忽视伦理维度。白皮书提醒我们:提示词工程伴随着责任。必须警惕潜在偏见,避免生成有害内容,并确保AI的使用符合我们的价值观。
示例:需要生成营销文案?
不要说:"写有说服力的广告文案。"
而应该说:"为我们的减肥产品撰写有说服力的广告文案。需确保内容真实可信,避免夸大宣传,倡导健康生活方式而非单纯强调外形改变。"
伦理不是束缚,而是竞争优势。
✅ 高效提示词设计的最佳实践
以下是一些提升提示词设计效果的实用技巧:
清晰明确:设计清晰具体的提示词,有效引导模型输出。
善用示例:特别是在小样本提示场景中,加入相关示例来示范预期结果。
迭代优化:持续测试并优化提示词,以获得最佳效果。
结构化格式:设计能激发特定格式回复的提示词,提升一致性和可用性。
调整采样参数:微调temperature、top-p和top-k等参数,平衡回答的创造性和可靠性。
结语
谷歌这份白皮书不仅是学术探讨,更是一份行动倡议。
提示词工程代表着未来,掌握它的人将成为时代的赢家。
是时候停止将AI视为黑箱,而应将其视为我们最强大的合作伙伴了。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】