简介
阿里云《人工智能+教育行业应用白皮书》指出,AI能解决教育结构性矛盾,包括个性化与普及化的三角困局、师资资源不均及评价方式单一。白皮书详述了AI在促进学生个性化学习、教师工作方式变革、教学环境优化等方面的应用案例,并展望了AI+教育将向教育生态重构、技术深度融合和伦理治理三大方向发展,推动教育公平与质量提升。
2025年7月阿里云发布了《人工智能+教育行业应用白皮书》,这份白皮书全面分析了人工智能(AI)在教育领域的融合应用 。它深入探讨了“AI+教育”的历史背景、当前应用场景、面临的挑战及未来发展趋势。
文件核心观点认为,人工智能是一股变革性的力量,在迈向“新质生产力”和“智能时代”中,亟需通过人工智能(AI)来解决长期存在的教育“结构性矛盾”:
1)个性化 vs 普及化 vs 高质量教育的三角困局;
2)师资稀缺、经费不均、资源失衡;
3)传统教育评价方式单一,难以支撑因材施教与全面发展。
第一章:智能时代的教育发展与变革
传统教育模式在“个性化教育”、“普适教育”和“高质量教育”三者之间存在难以调和的结构性矛盾 。例如,个性化教育需要大量定制资源和投入,但我国庞大的学生基数(2022年2.93亿在校学生)与稀缺的师资(1880.36万专职教师)之间存在巨大矛盾。同时,高质量教育对师资(2023年全国中小学高级教师占比仅6.8%)和资源投入提出更高要求,且地区间教育资源不均衡问题突出。
报告认为,人工智能、大数据和云计算等技术的发展,为突破这一困境提供了可能 。人工智能(AI)技术,特别是深度学习算法、海量数据和云计算算力平台的协同创新,在近几年迎来爆发式增长。
从智能语音助手到生成式AI,AI正以前所未有的速度和广度渗透到各个领域,深刻重构社会运行逻辑和生产方式。对于教育行业而言,这“不仅是一个技术革新,更是一个前所未有的战略性机遇,将深刻重塑教育的生态系统和价值内涵。”
人工智能与教育的融合经历了四个主要发展阶段 :
1.计算机辅助教学阶段 (CAI):利用计算机辅助教学的初级阶段 (1950s-1980s)
2.智能教学系统阶段 (ITS):发展出更复杂的系统来指导学习过程**(1980s-1900s)**
3.自适应学习阶段:利用平台技术根据学生的个体需求进行调整 (2000s-2020s)
4.个性化内容生成阶段:当前所处的阶段,AI能够生成定制化的教育内容**(2020s-至今)**
近期生成式AI的爆发式增长被视为一个战略性机遇,它将深刻重塑教育的生态系统。同时一系列政策报告明确支持“人工智能+”行动,旨在构建一个更智能、公平的现代教育体系 。
第二章:人工智能促进学生成长
人工智能的创新价值“远远超越技术本身,将从根本上改变学生成长、教师发展和学习环境发展模式。”
今天的学生(e世代,生并成长于电子技术与互联网广泛应用时代的一代人)已深度融入数字环境。2024年11月《第六次中国未成年人互联网使用情况调查报告》显示,近90%未成年网民听说过AI技术,42.4%非常感兴趣,19%已使用过生成式AI。学生普遍对AI学习工具持积极态度,认为能帮助课业辅导、促进学习进步。
AI为个性化教育提供有力支撑,能根据学生学习速度、理解能力、兴趣爱好和知识盲点,“为每位学生制定符合其需求的学习路径,确保他们在适合自己的节奏下高效学习。” 这不仅提升成绩,也激发学习兴趣。
1)个性化学习规划、针对性学习资源推送: AI系统根据学生知识图谱、学习风格和历史数据,定制学习规划,精准识别强项弱项,实时推荐学习资源。
案例: 深圳外国语学校、信阳市第三小学正商分校利用智慧教育平台实现个性化学习内容推送和路径推荐。
2)数字人老师、英文翻译、口语问答: AI数字人老师提供沉浸式语言教学体验,实时进行翻译,智能口语问答系统评估纠正发音语法。
案例: 重庆礼嘉实验小学利用AI听说课堂提升口语评测;武汉武珞路中学利用AI数字人老师(如“苏轼”和“Anna”)进行英语互动对话,提升趣味性。
3)拍照解题、作业辅导、AI判卷: 学生拍照上传题目,AI系统秒级识别、解题并提供详细步骤;AI判卷系统客观公正评判,显著提高效率。
案例: 中科院上海实验学校、上海及长三角部分中小学应用AI作文智能辅导系统;深圳宝安外国语学校利用AI对艺术考试进行智能判卷和反馈。
4)错题记录及组卷、知识点巩固练习: AI系统自动构建个性化错题库,智能生成专属练习卷,精准定位薄弱环节并强化训练。
案例: 深圳宝安外国语学校结合智学网为学生生成专属作业;美国硅谷哈克学校利用Afficient Academy平台进行错题记录和针对性巩固练习。
5)残疾学生教育、孤独症教育: AI通过语音识别、计算机视觉和个性化学习算法,为听障、视障、孤独症儿童提供定制化解决方案。
案例: 阿里巴巴推出孤独症儿童AI绘本工具“追星星的AI”;北京市盲人学校利用语音识别和合成辅助视障学生;广州市聋人学校采用手语识别与翻译系统提升师生沟通。
6)学生心理支持、情感沟通: AI心理机器人可提供情感安抚和积极应对建议,缓解学生心理压力。但整体上还处在初级阶段,各院校主要应用场景仍然是基于心理测试问卷进行填写,再结合 AI 进行综合评估,真正能提供心理与情绪价值的个性化 AI 学伴,仍需技术迭代与应用落地的双重时间积淀。
第三章 人工智能促进教师发展
1. 人工智能改变教师工作方式
AI无法取代教师,但教师角色和核心素养将发生重大转变。“英国剑桥大学和英国广播公司(BBC)分析了 365 种职业的未来前景,结果显示教师职业被取代概率只有 0.4%。” 教师将成为“混合型职业”,具备创造力、教学变革能力和领导力。
美国《教学2030》报告指出,教师将成为“教师企业家”(Teacherpreneur)。教育部《关于开展人工智能助推教师队伍建设行动试点工作的通知》提出提升教师智能教育素养,要求教师掌握AI知识,具备运用AI技术改进教学、创新人才培养模式的能力。
联合国教科文组织《面向教师的人工智能能力框架》明确了教师的五个关键能力:
1)以人为本的思维: 在AI使用中保持以人类为中心的价值观。
2)人工智能伦理: 应用伦理原则,指导学生理解和实践AI伦理。
3)人工智能基础和应用: 掌握AI基础知识,选择合适的AI工具支持教学。
4)人工智能教学法: 将AI运用于教学实践,创造新教学法,支持学生创新自主学习。
5)人工智能和专业发展: 利用AI工具支持自我评估和规划个性化学习路径。
该框架还提出规范使用AI、制定支持政策、定制本地能力框架、设计培训项目和开发绩效评估工具等建议。
教师普遍表示生成式AI有助于节约时间、提高教学质量和改善与学生交互。他们对AI增强个性化教育的潜力持乐观态度,但也关注AI对批判性思维和潜在误用带来的伦理问题。国内调研显示,超过78%的教师支持AI辅助教学,85%希望减轻备课和重复性工作负担,主要期望AI在作业试卷批改、学生学习数据分析、个性化学习方案和教学资源智能推荐方面提供帮助。
未来,“AI不会取代教师,但会用AI的教师将取代不会用AI的教师。”
人机协同为教师发展开辟新路径。智能工具可帮助教师教学提质增效,减轻备课和作业批改负担,让教师专注于创意和内容优化。在教师专业成长方面,AI可分析教学实践数据,提供量化评估报告,助力教师明晰优势与短板。
AI+教师发展应用场景包括:
1)AI+课前场景: AI可作为教师备课助手,秒级生成教学内容,智能推荐教学资源,自动设计课程框架、生成多模态教案、制作PPT和教学视频,甚至模拟虚拟试讲。
案例: 北京市第十五中学利用智能平台生成教学内容框架;合肥市第七中学利用AI教师助手生成教学规划、课件、思维导图和拓展性文本资源;北京市人大附中教师自主研发跨学科课程,利用大模型进行多模态内容创作。
2)AI+课中场景: AI重塑课堂学习生态,智能云课堂突破空间限制,云电脑直接连接体验大模型;智能黑板/白板实时互动,数字人老师秒级响应学生问题,AI智能识别课堂氛围。
案例: 江苏省靖江高级中学英语课上学生与AI对话,语文课利用生成式AI“文生图”理解文学作品;浙江大学计算机学院研发智海人工智能科教平台,提供沉浸式AI教学体验。
3)AI+课后场景: AI成为课后学习的全方位智能助手,秒级完成作业批改,提供错误解析和个性化学习建议,生成可视化学习画像,智能推荐补充练习。
案例: 北京市东城区培新小学引入“好专业·AI智能作文教学平台”进行作文教学;深圳宝安外国语学校引入AI作业批改;北京邮电大学计算机科技学院自研“码上”大模型赋能智能编程教学平台。
第四章 人工智能促进教学环境发展
1. 人工智能促进教学环境开放互联
AI正在重构教育时空边界,云计算、AI等技术从校园建设、学习场所、教学支持、学习资源等多方面改变教育环境,促使教育环境向数字化、智能化发展。学生可以轻松连接全球优质教育资源,AI实时翻译和知识互通技术促进不同文化背景学习者交流,云端协同学习空间和个性化智能推荐系统提供开放、平等、包容的学习环境,实现知识无国界、学习无边界的普惠教育。
然而,生成式AI也带来风险,如不准确、不适当的内容或偏见结果可能对学生造成负面影响。因此,在鼓励教师积极尝试AI的同时,必须对潜在风险保持警惕。
2. 人工智能促进教学环境变革
AI全面促进教育教学环境变革,主要体现在四大类应用:
1)AI+普惠: 通过智能技术实现教育资源的普惠共享,为偏远地区和弱势群体提供平等的优质学习机会。云端智能教学平台可将顶尖名校课程资源实时传输到乡村学校,低成本AI虚拟教学终端让乡村学生体验大模型学习辅助功能。
案例: 上海教委与阿里云、中国联通合作建设上海教育专有云平台,支撑K12学校和院校共享云资源;四川省甘孜州康定二中师生利用无影云电脑体验大模型AIGC;内蒙准格尔旗薛家湾第十一小学启动“人工智能+教育”双师课堂实验区项目;四川绵阳市火炬第四小学与北京市西城区奋斗小学开展“双师课堂”。
2)AI+评估: AI精准数据分析和智能评估系统能客观、全面评估学生学习全貌,突破传统单一评价模式。AI可构建全方位、多维度的智能评估体系,绘制学生立体画像,实时跟踪分析学生学习情况,并对教师教学质量进行评估管理。在心理健康评估方面,AI通过语音识别、表情分析和行为大数据判断学生心理异常和风险,提供个性化心理干预。
案例: 武汉市光谷第九小学引入AI心理测评服务,检测学生情绪波动和心理问题;北京市中关村第三小学利用智能系统记录学生学习数据,构建学生立体画像;成都市双林小学利用学习管理系统和智能摄像头对学生学习情况和课堂行为进行评估。
3)AI+管理: AI为决策提供数据驱动洞察,实现教育资源的精准配置和动态优化,使教育治理更加智能、高效和人性化。AI智能排课技术、智能图书馆系统、校园安保系统和AI智能客服机器人等大幅提升学校管理效率。
案例: 浙江大学附属中学启用“学科潜能测评”系统和智能排课系统;成都七中万达学校采用选课走班系统、智能图书管理系统和人脸识别门禁系统。
4)AI+科研: 智能计算平台依靠强大算力支撑,为高校AI+科研持续助力,培养创新土壤。高校科研智能计算平台提供一云多芯算力支持,助力高校大模型研发、训练、推理与实践,全面赋能学术研究各个环节。
案例: 复旦大学建设国内高校最大的云上科研智算平台CFFF,推动AI与多学科紧密结合,加速科研范式变革,例如伏羲气象大模型;中山大学与阿里云生物计算团队合作,基于病毒大数据构建深度学习模型LucaProt,发现并整理RNA病毒类目。
第五章 “人工智能+教育”应用趋势展望
未来的AI+教育将超越单纯技术赋能,迈向教育形态的系统性重构,由政策深化、技术迭代与社会需求三重共振驱动。
1. 从“工具辅助”到“生态重构”:政策驱动下的教育新体系
国家级政策已明确AI素养的基础性地位,如教育部《中小学人工智能通识教育指南(2025年版)》正在构建覆盖全学段的“认知启蒙—原理探究—创新实践”螺旋式课程体系。核心在于推动AI从边缘工具走向教育生态的底层架构:
1)教学主体变革: “老师-学生-机器”三元协同模式普及,教师角色向学习设计者与伦理监督者转型,AI虚拟助教承担更多标准化教学任务,释放教师创造力。
2)评价体系革新: 依托多模态数据生成学生“能力图谱”,实现从单一考试分数向“知识—技能—思维—价值观”多维评价跃迁,促进学生德智体美劳全面发展。
3)资源融通机制: 通过国家及区域教育云平台打破地域壁垒,城乡学校共享AI课程资源与虚拟教研室,缓解资源结构性失衡,促进教育公平。
2. 从技术助力到技术融合:教育智能体重塑学习范式
生成式AI的爆发和演进将推动教育技术进入“强交互、高拟真”阶段,呈现三大方向:
1)情感化交互突破: AI虚拟学伴融合情感计算与认知推理,动态感知学习状态和情绪变化,提供心理支持与动机激励,实现“认知—情感”双轨辅导。
2)沉浸式场景革命: AI结合VR/AR等技术打造虚拟实验室、历史场景复现等,重构知识传递方式,具象化抽象概念,提升学习认知效率。
3)智能体范式崛起: 教育智能体(Edu-Agents)将超越传统工具形态,基于自然语言交互实现复杂任务自主执行,推动教育模式从“技术助力”向“人机共生”深度协同演进。
3. 从教育公平到伦理治理:技术向善的必然选择
AI正推动教育公平迈入新纪元,从资源分配的物理层面进化到认知权利的价值层面。
1)通过智能分发机制打破地域壁垒,如国家智慧教育平台汇聚2.9万门优质课程,借助AI推荐算法将一线城市精品课程同步至欠发达地区,使偏远学校学生实时接入名校课堂。
2)进一步降低内容生产门槛,偏远县域教师通过AI工具快速精准生成适配本地学情的课件、习题。
除技术鸿沟外,算法偏见、数据安全、系统可解释性也需重点关注。未来需建立“数据安全—算法透明—内容合规”三位一体治理体系,通过动态审查和第三方监测规避偏见强化与隐私泄露,将伦理规则嵌入技术应用服务链中,使技术向善成为教育教学的自我本能。
结束语
阿里云作为AI技术的前沿支持平台,描绘了一个由人工智能驱动的未来教育蓝图。
在这个智能技术日新月异的时代,人工智能正以前所未有的方式重塑教育的生态系统和价值内涵。人工智能 + 教育不仅仅是技术的革新,更是教育理想的重大实践。我们正站在一个关键的历史节点,承担着改变教育形态、提升教育质量、促进教育公平的伟大使命。
这份白皮书的亮点在于:
✅ 高屋建瓴的政策对接 ——与中国教育数字化战略高度同步;
✅ 真实丰富的案例支持 ——涵盖小学、初中、高中和高校;
✅ 全景视野的场景规划 ——从学生到教师、教学环境到科研系统;
✅ 关注公平与伦理 ——并非一味技术乐观,强调技术向善。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一直在更新,更多的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇
01.大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
02.如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。