阿里Qwen3 vs DeepSeek:大模型本地部署成本与性能全解析,小白也能轻松上手!

很多企业或者个人都想在本地部署一套大模型来满足一些特殊场景的需求,在过去,因为deepseek表现出的卓越性能,使得其成为大部分企业或者个人本地化部署的首选。

此外,由于deepseek对外完全开源,也就是我们部署到本地无需给deepseek公司支付任何费用,甚至使用deepseek进行任何商业行为,deepseek公司也不会来管你。

这就给特别多人带来一个很大的误区,以为可以使用很低的成本就可以部署deepseek到本地,其实不然。

deepseek在社区有不同的蒸馏版本,其部署时对硬件要求各不一样,我们常常见到的deepseek r1满血版本即671B版本,真正要实现本地化部署,其硬件成本需求往往要超过百万。

下面这个表就是deepseek不同版本的硬件需求以及对应的大致成本。

其实,我们在大模型本地化部署时,可以不只盯着deepseek,下面我们就来聊聊五一节前阿里重磅发布的Qwen3系列开源大模型。

首先,我们可以通过通义官方发表的这张长图来了解Qwen3大模型的能力。

Qwen3采用的是创新的MOE(混合专家)架构,融合了推理和非推理能力,在推理、工具调用、指令遵循和多语言能力等方面都表现优异。

跟deepseek的深度思考能力有所不同,deepseek关闭深度思考其实就从R1变成了V3,而Qwen3则模型本身并没有改变。

这种架构的大模型在国内,Qwen3可以算首发。

本次Qwen3发布带来了从0.6B到235B不同系列共计8个版本的大模型,其中两款适合复杂任务的MOE架构的Qwen3-30B-A3B和Qwen3-235B-A22B性能表现均相当优秀。

非常值得一提的是,整体性能与deepseek不相上下的同时,其对硬件需求却比deepseek低很多。

旗舰模型Qwen3-235B-A22B其部署成本仅为deepseek R1的35%,最低只需要4张H20就可以正常运行,部署量化后的版本仅需8张4090卡或者2张H20卡即可。

比Qwen3-235B-A22B稍逊一筹的Qwen3-30B-A3B部署成本更低,可在消费级显卡上部署,满血版本仅需2张4090卡即可,量化版本用单卡4090就可以跑起来。

也就是说以前动则几十万上百万的部署成本,如果换成Qwen3系列仅需几万或者十几万就轻松搞定。

那么,在能力上,Qwen3与deepseek有什么差异呢?

均以两者旗舰版本为参考,两者的能力差异主要聚焦在以下方面:

硬件成本

  • Qwen3系列:旗舰模型Qwen3-235B-A22B部署成本仅为DeepSeek-R1的35%,最低4卡H20即可运行。

  • deepseek系列:DeepSeek-R1需双节点8卡A100服务器(显存需求1300G+),硬件门槛更高。

模型架构

  • Qwen3系列:混合专家(MoE)架构,支持动态激活参数(如235B总参数量,仅激活22B),资源利用率更高。

  • deepseek系列:基于Moe混合专家()架构创新,推理时虽无需全参数加载,但显存占用率比Qwen3要高。

推理模式

  • Qwen3系列:双模式切换:普通模式(响应快)和思维链模式(复杂任务更精准),可手动控制。

  • deepseek系列:单一推理模式,需通过参数调整优化性能。

多模态支持

  • Qwen3系列:原生支持图文语音一体化处理,内置MCP工具调用框架(如统计图表生成、代码解释器)。

  • deepseek系列:主要聚焦文本处理,多模态能力依赖外部扩展。

本地化适配

  • Qwen3系列:提供0.6B~235B全尺寸模型,支持CPU/GPU混合推理(如KTransformers框架),移动端到服务器全覆盖

  • deepseek系列:模型尺寸集中在1.5B~70B,需较高显存(如32B需16核CPU+专业级GPU)。

多语言能力

  • Qwen3系列:支持119种语言(含方言),中文理解能力极佳(本土化训练)

  • deepseek系列:中文支持较好,但语言覆盖范围较窄(约15种)

此外,在工业互联网领域的应用上,Qwen3的0.6B模型支持在边缘设备(如工控机)部署,实时分析传感器数据。

其实,在五一节放假前的最后一天,deepseek团队也更新了采用创新MOE架构的模型Prover-V2。

其更专注数学定理证明,大幅刷新多项高难基准测试。

在普特南测试上,新模型DeepSeek-Prover-V2直接把记录刷新到49道

目前的第一名在657道题中只做出10道题,为Kimi与AIME2024冠军团队Numina合作成果Kimina-Prover。

而未针对定理证明优化的DeepSeek-R1只做出1道

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一直在更新,更多的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇

在这里插入图片描述

01.大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

02.大模型 AI 学习和面试资料

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值