2024年最全RRT(快速搜索随机树)_无人机快速搜索随机树流程图,2024年最新物联网嵌入式开发工程面试问题

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

delta = 5;

[vertices, edges, path] = rrt(map, q_start, q_goal, k, delta_q, p);

path_smooth = smooth(map, path, vertices, delta);

imshow(int32(1 - map), []);
title('RRT (Rapidly-Exploring Random Trees) - Smooth');
% imagesc(1 - map);
% colormap(gray);

hold on;

[edgesRowCount, ~] = size(edges);

for ii = 1 : edgesRowCount
    plot(vertices(ii, 1), vertices(ii, 2), 'cyan*', 'linewidth', 1);
    plot([vertices(edges(ii, 1), 1), vertices(edges(ii, 2), 1)], ...
    [vertices(edges(ii, 1), 2), vertices(edges(ii, 2), 2)], ...
     'b', 'LineWidth', 1);
end

plot(q_start(1), q_start(2), 'g*', 'linewidth', 1);
plot(q_goal(1), q_goal(2), 'r*', 'linewidth', 1);


[~, pathCount] = size(path);

for ii = 1 : pathCount - 1
    %plot(vertices(ii, 1), vertices(ii, 2), 'cyan*', 'linewidth', 1);
    plot([vertices(path(ii), 1), vertices(path(ii + 1), 1)], ...
    [vertices(path(ii), 2), vertices(path(ii + 1), 2)], ...
     'r', 'LineWidth', 1);
end

[~, pathCount] = size(path_smooth);

for ii = 1 : pathCount - 1
    %plot(vertices(ii, 1), vertices(ii, 2), 'cyan*', 'linewidth', 1);
    plot([vertices(path_smooth(ii), 1), vertices(path_smooth(ii + 1), 1)], ...
    [vertices(path_smooth(ii), 2), vertices(path_smooth(ii + 1), 2)], ...
     'black', 'LineWidth', 2);
end


//rrt.m
function [vertices, edges, path] = rrt(map, q_start, q_goal, k, delta_q, p)
%Algorithm to build a tree to solve map
% that goes from the start position till the goal position and to generate a path that connects
% both vertices
%
% map: matrix that you can obtain loading the mat files.
%
% q_start: coordinates x and y of the start position. You can find the coordinates below the figures
% of the environmentin the previous page.
%
% q_goal: coordinates x and y of the goal position. You can find the coordinates below the figures
% of the environment in the previous page.
%
% k: maximum number of samples that will be considered to generate the tree, if the goal is not
% found before.
%
% delta_q: distance between q_new and q_near.
%
% p: probability (between 0 and 1) of choosing q_goal as q_random.
%

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

路线、电子书籍、讲解视频,并且后续会持续更新**

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值