一切皆是映射:Transformer架构全面解析
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
自然语言处理(NLP)领域长期以来面临着序列到序列的转换难题。从语言模型到机器翻译,再到问答系统和对话系统,序列到序列的转换一直是NLP的核心挑战。传统的循环神经网络(RNN)和卷积神经网络(CNN)在处理长序列和长距离依赖时,存在着计算效率低下、梯度消失或梯度爆炸等问题,难以满足NLP任务的高效处理需求。
为了解决这些问题,Google的研究团队在2017年提出了Transformer模型,这是一种基于自注意力机制的深度神经网络架构。Transformer模型在机器翻译、文本摘要、问答系统等领域取得了显著的成果,成为了NLP领域的重要里程碑。本文将深入解析Transformer架构,探讨其原理、实现和应用。
1.2 研究现状
近年来,Transformer模型及其变种在NLP领域取得了举世瞩目的成就。以下是一些代表性的工作:
- BERT(Bidirectional Encoder Represe