一切皆是映射:Transformer架构全面解析

一切皆是映射:Transformer架构全面解析

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

自然语言处理(NLP)领域长期以来面临着序列到序列的转换难题。从语言模型到机器翻译,再到问答系统和对话系统,序列到序列的转换一直是NLP的核心挑战。传统的循环神经网络(RNN)和卷积神经网络(CNN)在处理长序列和长距离依赖时,存在着计算效率低下、梯度消失或梯度爆炸等问题,难以满足NLP任务的高效处理需求。

为了解决这些问题,Google的研究团队在2017年提出了Transformer模型,这是一种基于自注意力机制的深度神经网络架构。Transformer模型在机器翻译、文本摘要、问答系统等领域取得了显著的成果,成为了NLP领域的重要里程碑。本文将深入解析Transformer架构,探讨其原理、实现和应用。

1.2 研究现状

近年来,Transformer模型及其变种在NLP领域取得了举世瞩目的成就。以下是一些代表性的工作:

  • BERT(Bidirectional Encoder Represe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值