MCI, 疾病分类, 机器学习, 深度学习, 神经网络, 诊断, 预后
1. 背景介绍
随着全球人口老龄化进程的加速,认知障碍(Cognitive Impairment,CI)已成为一个日益严峻的公共卫生问题。其中,轻度认知障碍(Mild Cognitive Impairment,MCI)作为一种介于正常衰老和阿尔茨海默病(Alzheimer's Disease,AD)之间的认知功能下降状态,其发生率较高,且具有发展为AD的风险。因此,准确识别和分类MCI患者对于早期干预、延缓疾病进展和减轻患者及家属负担具有重要意义。
传统上,MCI的诊断主要依赖于临床评估和神经影像学检查,但这些方法存在着主观性强、成本高、时间耗长等缺点。近年来,机器学习(Machine Learning,ML)技术在医疗领域取得了显著进展,为MCI的诊断和分类提供了新的思路和方法。
2. 核心概念与联系
机器学习是一种人工智能技术,它通过算法学习数据中的模式和规律,从而实现对未知数据的预测和分类。在MCI疾病分类中,机器学习算法可以利用患者的临床特征、神经影像学数据、基因信息等多模态数据,构建预测模型,识别MCI患者。