大模型、语音识别、Transformer、BERT、wav2vec、端到端、自动语音识别(ASR)
1. 背景介绍
语音识别技术作为人工智能领域的重要分支,近年来取得了显著进展。传统的语音识别系统主要依赖于手工特征工程和基于隐马尔可夫模型 (HMM) 的统计方法,但这些方法在面对复杂语音环境和方言识别等方面存在局限性。
随着深度学习技术的兴起,基于深度神经网络的语音识别系统逐渐成为主流。这些系统能够自动学习语音特征,并实现端到端的语音识别,显著提高了识别准确率和鲁棒性。
然而,传统的深度学习模型在语音识别任务中仍然面临着一些挑战,例如:
- 数据依赖性: 深度学习模型需要大量的标注语音数据进行训练,而获取高质量标注数据成本高昂且耗时。
- 计算资源需求: 训练大型深度学习模型需要大量的计算资源,这对于资源有限的机构或个人来说是一个障碍。
- 模型泛化能力: 训练好的模型在面对新的语音环境或方言时,识别性能可能下降。
2. 核心概念与联系
大模型是指参数量巨大、训练数据海量、学习能力强的人工智能模型。近年来,大模型在自然语言处理 (NLP) 领域取得了突破性进展,例如 BERT、GPT 等模型。
在语音识