基于用户角色的 LLM 生成响应的个性化

            欢迎来到雲闪世界ChatGPT 或当今底层的大型语言模型 (LLM) 能够在给出提示的情况下生成情境化的响应。

作为 LLM 发展的下一步,我们希望响应能够根据最终用户的角色、对话历史、当前对话环境和情绪变得越来越个性化。

LLM 个性化的主要优势包括:

  • 个性化响应:Gen AI 解决方案根据与之交互的用户调整其语言、语调和复杂性。这确保对话更符合用户的期望和沟通风格。
  • 对话上下文:Gen AI 解决方案了解用户的典型用例、偏好和历史记录,从而能够提供更具上下文相关性和个性化的响应。
  • 内容定制:Gen AI解决方案可以根据用户的需求,优先考虑或突出显示不同的功能或内容类型,从而使交互更加高效和人性化。
  • 主动协助:Gen AI 解决方案可以预测不同用户的需求,并根据他们的特定个人资料或任务提供主动建议、资源或提醒。

在之前的文章 [1] 中,我们撰写了关于设计基于用例的 LLM 评估策略的文章。在某种程度上,当我们谈论应用生成式人工智能 (Gen AI) 来解决当今的特定用例时,我们基本上是在个性化预训练的(基础)LLM,以便它提供针对该用例的特定响应。当今的用例情境化 [2] 主要涉及使用用例特定的企业数据对预训练的 LLM 应用微调/RAG。

图:基于用例的 LLM 情境化(作者提供图片)

在本文中,我们讨论了如何将相同的技术应用于用户数据(用户个人资料和对话数据)以个性化 LLM 响应。

因此,我们基本上需要了解如何最好地应用:

  • 微调,
  • 检索增强生成 (RAG),
  • 带人工反馈的强化学习(RLHF)

关于用户数据:

  • 用户资料、人物角色
  • 对话历史记录
  • 当前对话背景和情绪。

基于用户角色的 LLM 微调

如今,用户希望获得无缝且个性化的体验,并希望获得定制答案来满足他们的特定查询。然而,由于规模、性能和隐私方面的挑战,用户特定的个性化仍然具有挑战性。

基于角色的个性化 [3] 旨在通过将服务的最终用户划分为一组可管理的用户类别来克服这些挑战,这些类别代表了大多数用户的人口统计和偏好。例如,在支持 Gen AI 的 IT 服务台(当今 Gen AI 采用率最高的领域之一)场景中,典型的角色包括:

  • 领导层:高级个人(例如副总裁、董事),他们需要优先获得对敏感数据的安全访问支持,以及对高层演示和视频会议的协助。
  • 知识型员工:严重依赖技术来完成日常任务的员工(例如,分析师、工程师、设计师)。
  • 现场工作人员:主要在办公室外工作的员工(例如销售代表、服务技术人员)。因此,他们的要求主要集中在远程访问公司系统、可靠的 VPN 以及离线工作功能的支持。
  • 行政/人力资源:负责各种行政任务(例如人力资源、财务)的支持人员,主要要求协助使用微软 Office 软件、访问特定的业务应用程序以及快速解决常规 IT 问题。
  • 新员工/实习生:新加入组织且可能不完全熟悉公司 IT 系统的个人。因此,他们的问题主要集中在入职相关的问题上。

鉴于此,执行基于角色的 LLM 微调是有意义的——创建特定于角色的小型语言模型 (SLM)。模型路由器有助于执行提示分段(评分)并将提示路由到最相关的角色 SLM。

图:基于用户角色的 LLM 微调(图片来自作者)

微调过程包括首先参数化(聚合)人物数据和对话历史,并通过适配器将其作为内存存储在 LLM 中 [4],然后对 LLM 进行微调以生成个性化响应。例如,请参阅 [5, 6] 分别了解教育和医学背景下基于人物的 LLM 微调的详细信息。

  • [5] 考虑在教育语料库上预训练模型来建立基础知识库,然后针对个性化任务(例如论文评估)对其进行微调。
  • [6] 将参数高效微调(PEFT)与记忆检索模块相结合,以生成个性化的医疗反应。

LLM — 用户嵌入

在本节中,我们重点生成用户对话嵌入,这是微调和/或实时 RAG 提示上下文增强的先决条件。

对原始用户数据进行 LLM 微调通常过于复杂,即使是在(聚合)角色级别。

  • 对话数据通常跨越多个旅程,具有稀疏的数据点、各种交互类型(多模式)以及潜在的噪音或与不完整的查询(响应)的不一致。
  • 此外,有效的个性化通常需要深入了解用户行为背后的潜在意图/情感,这可能会给通用(预训练)LLM 带来困难。
  • 最后,微调需要大量计算。用户对话数据可能很长。使用 LLM 处理和建模如此长的序列(例如多年的对话历史)实际上并不可行。

克服上述问题的一个很好的解决方案参考是 Google 在 User-LLM 方面的工作。根据 [7] 中的作者所述,

USER-LLM 从多样化和嘈杂的用户对话中提取压缩表示,有效地捕捉用户在各种交互模式下的行为模式和偏好的本质。

这种方法使 LLM 能够更深入地了解用户的潜在意图(包括情绪)和历史模式(例如,用户查询 - 响应的时间演变),从而使 LLM 能够定制响应并生成个性化结果。解决方案架构如下图所示。

图:基于用户嵌入的 LLM 个性化(作者提供图片)

基于强化学习的法学硕士个性化

在本节中,我们将展示如何根据基于强化学习的推荐引擎对 LLM 生成的响应进行个性化。

强化学习 (RL) 是一种强大的技术,它能够通过实时最大化奖励函数来实现复杂的目标。奖励函数的工作原理类似于用糖果和打屁股来激励孩子,当算法做出错误决定时会受到惩罚,而当算法做出正确决定时会得到奖励——这就是强化。

我们概述了下面的高级步骤,以使基于强化学习的推荐引擎能够个性化 LLM 生成的响应。

1. 使用可用的传感器收集用户对话上下文和情绪,以计算“当前”用户反馈,

2. 然后将其与用户对话历史相结合,量化用户情绪曲线并忽略用户情绪的任何突然变化;

3. 得出与向用户提供的最后一个 LLM 响应相对应的总奖励值。

4. 然后将该奖励值作为反馈提供给 RL 代理——选择下一个最佳 LLM 生成的响应提供给用户。

图:基于强化学习的 LLM 个性化(作者提供图片)

更具体地说,我们可以将支持 RL 的推荐引擎 [8] 与基于 LLM 的聊天应用程序 [9] 的集成制定如下:

动作(a):在这种情况下,动作 a 对应于作为正在进行的对话的一部分,响应用户查询/提示而传递给用户的 LLM 生成的响应。

代理 (A):执行操作的代理。在本例中,代理是向用户提供 LLM 响应的聊天应用程序,其中根据其策略选择操作(如下所述)。

环境:指代理与之交互并对代理的操作做出响应的世界。在我们的案例中,环境对应于与聊天应用程序交互的用户U。U通过提供不同类型的反馈来响应A的操作,包括显式反馈(以聊天响应的形式)和隐式反馈(例如,用户情绪的变化)

Policy(𝜋):是代理用来选择下一个基本动作 (NBA) 的策略。给定用户资料Up、(当前) 情绪Us和查询Uq;策略函数分别计算 NLP 和推荐引擎返回的响应分数的乘积,选择得分最高的响应作为 NBA:

  • NLP 引擎 (NE) 解析查询/提示并输出响应的排序列表。
  • 推荐引擎 (RE) 根据奖励函数为每个响应提供分数,并考虑用户个人资料、偏好、对话历史/上下文和情绪。策略函数可以形式化如下:

奖励 (r):指我们用来衡量代理推荐操作(响应)成功或失败的反馈。例如,反馈可以指用户阅读推荐文章所花的时间,或收到响应后用户情绪的变化。我们考虑一个 2 步奖励函数计算,其中首先将收到的与推荐操作相关的反馈fa映射到情绪分数,然后将其映射到奖励

r(a,fa) = s(fa)

其中rs分别表示奖励函数和情绪函数。RL 公式如下图所示:

图:LLM 个性化——RL 公式(作者提供图片)

结论

在本文中,我们考虑了基于用户数据的 LLM 生成响应的个性化。个性化有可能通过提高用户满意度来显著加速 LLM 的采用。我们提出并详细介绍了三种 LLM 个性化技术:(a) 基于角色的 LLM 微调,(b) 生成用于推理的用户 LLM 嵌入,以及 (c) 基于强化学习的 LLM 个性化。作为未来的工作,我们正在探索一种综合方法,根据用例需求和用户数据可用性应用多种个性化技术。

欢迎来到雲闪世界

感谢关注雲闪世界。(Aws解决方案架构师vs开发人员&GCP解决方案架构师vs开发人员)

 订阅频道(https://t.me/awsgoogvps_Host)
 TG交流群(t.me/awsgoogvpsHost)

<think>好的,用户想了解如何使用LLM和RAG技术构建虚拟教学系统。首先,我需要回忆RAG的基本原理,它结合了信息检索和生成模型,对吧?根据引用[2]和[4],RAG的核心是先检索相关文档,再生成答案。那在虚拟教学系统中,应用这个技术的话,可能需要一个知识库,比如课程资料、教材等,作为检索的来源。 接下来,系统的架构可能需要几个模块:知识库构建、检索器、LLM集成、交互界面等。知识库方面,得考虑如何结构化存储教学资料,可能需要向量数据库来支持高效检索。然后,检索器需要将用户的问题转换为向量,进行相似度匹配,找到最相关的文档片段,这部分可以引用[4]提到的建立索引的过程。 然后是LLM生成部分,如何将检索到的内容整合到提示中,让模型生成准确的回答。比如,当学生提问时,系统先检索相关知识点,再让LLM基于这些信息生成解释,这样避免模型产生幻觉,如引用[4]所说。同时,可能需要设计反馈机制,让学生可以纠正错误,帮助系统优化,这一点参考了引用[3]提到的Fine-tuning技术。 另外,个性化教学需要考虑学生的历史数据,可能需要用户画像模块,记录学习进度和薄弱点,动态调整内容。引用[3]提到的垂直训练大模型,可能在这里用于针对特定学科优化模型表现。 最后,实现步骤需要分阶段:准备知识库、构建检索模块、集成LLM、开发交互界面、测试优化。还要注意数据安全和隐私保护,确保学生信息不被泄露。可能遇到的挑战包括知识库的全面性、检索的准确性、生成答案的可理解性,这些都需要反复测试和调整。 相关问题部分需要覆盖技术实现、优化、挑战和应用场景,确保用户全面了解构建过程中的关键点。</think>### 如何构建基于LLM和RAG的虚拟教学系统? #### 1. **系统核心架构设计** 虚拟教学系统的核心是通过RAG技术将教学知识库与LLM结合,实现智能问答、个性化教学和动态内容生成。主要模块包括: - **知识库构建**:整合教材、课程讲义、习题解析等结构化或非结构化数据,通过向量化工具(如BERT、Sentence-BERT)转换为嵌入向量,并存入向量数据库(如FAISS、Pinecone)[^4]。 - **检索模块**:使用检索器(如BM25、DPR)从知识库中匹配用户问题的最相关片段。例如,学生提问“牛顿第一定律的公式是什么?”时,检索器会返回教材中对应的段落和公式。 - **生成模块**:将检索到的信息与用户输入拼接为提示词,输入LLM(如GPT-4、Llama 2)生成自然语言回答。例如: ```python def generate_answer(question, retrieved_text): prompt = f"基于以下内容回答问题:{retrieved_text}\n问题:{question}" return llm.generate(prompt) ``` - **反馈与优化**:记录学生交互数据,通过微调(Fine-tuning)优化LLM生成效果,如引用[3]提到的数据蒸馏和模型部署方法[^3]。 #### 2. **关键技术实现步骤** 1. **知识库索引构建**: - 使用文本分块工具(如LangChain的TextSplitter)将教材分割为片段。 - 调用嵌入模型(如OpenAI的text-embedding-3-small)生成向量。 - 存储到向量数据库,支持高效相似性检索。 2. **检索增强生成流程**: - 用户输入问题后,系统将问题向量化,从知识库中检索Top-K相关片段。 - 设计提示模板,例如: ``` “你是一名教师,请根据以下知识回答问题: {检索到的内容} 问题:{用户输入}” ``` - 调用LLM生成答案,并通过温度参数(temperature)控制输出多样性。 3. **个性化教学功能**: - 构建学生画像,记录学习历史、错题记录、知识点掌握程度。 - 基于画像动态调整检索策略(例如优先检索薄弱知识点)和生成风格(例如简化语言或增加例题)。 #### 3. **实际应用场景示例** - **智能答疑**:学生提问“如何证明勾股定理?”,系统检索几何教材中的证明步骤,生成分步解释并附加图形示例。 - **自适应测试**:根据学生历史表现,从题库中检索难度匹配的题目,由LLM生成变式题。 - **课程内容生成**:教师输入“生成一节关于量子力学的科普课大纲”,系统结合最新论文和教材生成结构化内容。 #### 4. **挑战与优化方向** - **知识更新**:定期爬取学术网站(如arXiv)更新知识库,避免LLM生成过时内容。 - **幻觉控制**:在提示词中添加约束,如“仅基于检索内容回答,不确定时回复‘暂无信息’”。 - **性能优化**:使用量化技术压缩LLM模型,或采用RAG与微调结合的方式(如引用[3])提升响应速度。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值