一文彻底搞懂什么是AI Agent、coze?如何搭建coze智能体?看完你就懂了!

最近接触到想要复刻搭建智能体案例的小伙伴,但其对Coze平台的使用熟练度都不是很高。多数都属于初识阶段,面对学习中的卡点无从下手,这里对AI智能体以及Coze基础进行一次整体的介绍。

通过这篇介绍,带大家了解以下几个知识点

    1. 什么是AI Agent
    1. 了解Coze智能体平台
    1. Coze平台具备哪些重要功能?
    1. 如何搭建第一个Coze智能体?
    1. 如何自学Coze基础

认识AI Agent

Generative AI Application Level

Level描述示例
L1 Tool人类完成所有工作,没有任何明显的AI辅助绝大部分应用
L2 Chatbot人类直接完成绝大部分工作。人类向AI询问意见,了解信息,AI提供信息和建议但不直接处理工作初代ChatGPT
L3 Copilot人类和AI进行写作,工作量相当。AI根据人类要求完成工作初稿,人类进行目标设定、修改调整,最后确认Github Copilot, Midjourney, ChatGPT
L4 AgentAI完成绝大部分工作,人类负责设定目标、提供资源和监督结果。AI完成任务拆分、工具选择、进度控制,实现目标后自动结束工作AutoGPT、Dify、Coze?
L5 Intelligence完全无需人类监督,AI自主拆解目标,寻找资源,选择并使用工具,完成全部工作,人类只需给出初始目标Manus、AutoGLM

大模型的缺陷

    1. 训练数据的时效性问题:由于训练数据的时效性,导致大模型无法回答训练数据日期之后的知识。
    • 持续更新数据:定期更新模型的训练数据,以包含最新的信息。
    • 实时数据接入:在模型中集成实时数据源,使其能够访问最新的信息。
    • 混合模型:结合使用大模型和小模型,小模型专门处理最新的数据和信息。
  1. 解决方案

    1. 公开数据的限制:由于大模型使用的是公开数据,针对企业私有数据的问题,无法进行回答。
    • 私有数据训练:在大模型的基础上,使用企业的私有数据进行微调(Fine-tuning),使其能够处理特定领域的私有数据。
    • 数据隔离:在模型中设置数据隔离机制,确保私有数据的安全和隐私。
    • 定制化模型:为企业定制专门的模型,专门处理其私有数据和特定需求。
  2. 解决方案

    1. 上下文(Token)限制:由于上下文(Token)的限制,无法处理长文本。
    • 分段处理:将长文本分割成多个短文本段,分别处理后再进行整合。
    • 上下文扩展:通过技术手段扩展模型的上下文长度,使其能够处理更长的文本。
    • 层次化模型:使用层次化的模型结构,先处理高层级的摘要信息,再逐步细化到具体细节。
  3. 解决方案

🤖

解决上述大模型存在的问题,必须要搭配一套完备的系统方案,而AI Agent的方案就是为此而设计。

AI Agent 技术原理

img

重点,AI Agent核心原理公式

AI Agent = LLM(大模型)+ Planning(规划)+ Memory(记忆)+ Tools(工具)

下面两张图,是学习智能体必须要理解的概念图。进一步认识智能体以及它的能力的边界。

img

  1. LLM(大模型+提示词):这是AI代理的核心部分,类似于人类大脑的核心。它负责理解和处理输入的信息。
  2. Planning(规划):这部分涉及如何组织和执行任务的流程。例如,先搜索信息,再写大纲,然后与人讨论等,这个过程通常被称为工作流。
  3. Memory(记忆):类似于我们写书时使用的笔记本或电脑,它允许AI代理随时回顾已经处理过的信息。
  4. Tools(工具):指的是AI代理可以使用的工具,比如谷歌浏览器,以便获取最新的信息。

*智能体(AI Agent)是人工智能领域的一个重要概念,指的是能够自主感知环境、做出决策并执行行动的系统。*

🤖

AI+Agent 是利用了AI 大模型能力的 Agent,而这个Agent又可以是多样的存在,用来帮助完成一些大模型无法触达的动作和实现大模型不具备的能力,例如它可以具备存储记忆、工具调用、行动规划等能力。

这样 大模型有了手脚,才能做更多的事情。

聊一聊Manus

img

前段时间Manus的爆火,AI Agent的这个概念又引发了热议,也少不了拿manus和Coze这类智能体开发平台进行对比,同为智能体产品,其二者的设计理念,解决问题的模式却不相同,manus更偏向自主规划与执行,而Coze则需要人为参设定执行路径。在未来随着大模型的继续进化,会继续催生新的范式,人参与的任务比例也将会变少。

AI Agent未来如何?漫谈

随着AI能力的进步,AI Agent的范式也会不断发生变化,正如上面看到的manus的出现,就是一个新的智能体范式。

作为AI的受益者,我们应该积极的看待这些技术的变化,无论AI Agent的形态如何,不管是Coze还是Manus,还是其它,一定要成为第一个学习和掌握并应用它的人,才能享受其第一波的红利机会。

Coze智能体平台

当你了解什么是AI Agent之后,对照Coze平台的能力,也会对其有一个初步的认识,Coze就是承担AI Agent 搭建开发的一套应用平台

Coze作为智能体开发平台,提供了便捷的、无代码/低代码的开发方式,可快速构建开发出一个智能体应用,极大的缩短了我们搭建智能体的路径。

同类的产品也有很多,比如开源的Dify、FastGpt,闭源的有百度的AppBuilder、腾讯的元器、阿里的百宝箱等。

掌握的Coze之后,其实可做到一通百通。目前主流智能体平台搭建的核心技术思路是相通的。

AI Agent 核心概念

AI Agent = LLM(大模型)+ Planning(规划)+ Memory(记忆)+ Tools(工具)

Coze作为智能体开发平台,其设计范式也是遵循上述公式。

当然,并不是智能体就必须包含上述全部。

可以理解,结合AI,用来解决你特定问题的Agent,都可以被定义为智能体

例如:

写作助理,其只需具备基础的大模型能力+提示词,即可满足你日常的使用需要,类似ChatGPT、Kimi这类问答助手。

智能搜索,类似秘塔搜索这种应用,其是一个搜索的智能体。

豆包的文生图,其是一个绘画生图的智能体。

我们搭建智能体的时候需要了解的一些原则

  • 清晰的需求场景
  • 了解智能体能力的边界

在以上两个前提下,再思考技术的应用,才能搭建出适合实际业务需求的智能体。

智能体开发不是一蹴而就,从0-1,也是不断迭代完成。

需要掌握的Coze核心概念

可通过官方的手册和案例模板,结合我们上面提到的AI Agent的原理,再理解下面的概念。

img

Coze智能体学习路径

许多小伙伴来咨询如何学习Coze智能体,如何快速入门。

这里可以分两类:

  • 纯小白,不了解AI,不懂代码
  • 有点基础,用过AI的工具(会写基础的提示词)、懂点代码(能看懂,写过)

对于纯小白,学习路径应该不是直接从Coze开始,而是先了解AI的基础概念,补齐概念的认知差。每天使用AI工具,了解AI的能力边界。同时需要学习一点编程知识(Python+AI编程)。然后再逐步开始学习Coze。

对有基础的小伙伴,最快的提升方式是,不断复刻案例,边做边学。最后能够达到自己搭建智能体用来解决实际业务需求问题。再就是直接实战,挑战难度案例,完成进阶。

如何阅读官方文档?

Coze的官方文档很容易被大家所忽略,但还是非常建议将它认真过一遍,对你理解Coze的设计理解很有帮助。

1、先去模仿做10个案例,再谈入门。最新的学习资料就是官方文档,外面的课程不见得能跟得上Coze的更新速度。

2、学会抓重点,官方文档不需要全看。而是作为一个备忘手册使用。

3、针对性练习,比如对工作流中部分节点不熟悉,结合案例针对性练习和理解。对于复杂的工作流复刻不了,就使用分治的策略进行学习理解。

4、完整方案实现思路:从软件工程角度来定义,智能体开发,先拆解需求,设计合理的实现逻辑,选择适合的技术方案。通过最小化路径验证,解决核心问题,最后再逐步完成整体开发工作。

5、官方的更新速度很快,仅仅靠课程中的内容提升是有限的,课程之后的大量且持续的练习,才能帮助你进阶。

Python编程入门

最后说下编程问题,针对无编程基础的同学,可以通过下面资料快速了解和掌握Python开发语言。

在日常遇到开发相关卡点,也可利用AI来解决,比如直接将问题给到Kimi、DeepSeek来解决。

B站搜Python基础教学,非常多的资料。

img

👉

我们在Coze中使用到Python的地方主要是代码节点和插件节点。

同时,在工作流的搭建过程也需要有代码的逻辑思维能力,其中的判断节点、循环节点、批处理节点、聚合节点等等,也都是代码的抽象存在。

因为Coze中使用Python主要用来做数据处理(类似我们数学中加减法的存在)。有一定的数据基础、数据结构基础,会很容易理解。所以基础部分学习到第18节即可。

同样,如果需要开发基础的插件,这些知识点也基本够用了。

普通人如何抓住AI大模型的风口?

=领取方式在文末==

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值