“Attention Is All You Need” —— 这篇论文开启了 AI 的黄金时代。如今,站在 Transformer 的肩膀上,我们将拆解 7 个正在重塑 AI 应用的一些技术架构。
一、MCP vs Function Calling:AI 的"USB 协议"
一句话总结
Function Calling 是给 AI 一个工具箱,MCP 是给 AI 一个应用商店。
为什么你需要关注
想象你在开发一个 AI 助手,需要接入天气查询、数据库、邮件发送等 20 个工具。
传统方式(Function Calling):
每次新增工具 → 修改代码 → 重新部署 → 祈祷不出 bug
MCP 方式:
安装 MCP Server → 用户授权 → 立即可用 → 像装插件一样简单
核心区别
维度 | Function Calling | MCP |
---|---|---|
扩展性 | 硬编码,改代码 | 插件式,动态加载 |
安全性 | 自己实现 | 协议级授权机制 |
生态 | 各自为政 | 统一标准(Anthropic 推动) |
适用场景 | 简单应用(<10 工具) | 复杂系统(>50 工具) |
💡 实战建议
- 初创公司快速验证? → Function Calling(快速上线)
- 企业级长期项目? → MCP(未来 18 个月将成为主流)
- 观望中? → 两者可共存,先用 Function Calling,后续迁移 MCP
关键洞察: MCP 将成为 AI Agent 的"USB 协议",就像 HTTP 之于 Web。2025 年是布局窗口期。
二、Binary Quantization:让 RAG 飞起来的秘密武器
Fast RAG架构
一句话总结
用 1 位替代 32 位存储向量,检索速度提升 30 倍,成本降低 97%。
痛点场景
你的 RAG 系统有 1000 万份文档:
- 传统方案: 需要 128GB 内存,查询耗时 500ms
- Binary Quantization: 只需 4GB 内存,查询耗时 15ms
技术原理(5 秒看懂)
原始向量:[0.234, -0.891, 0.456, ...] (32位浮点数) ↓二值化: [1, 0, 1, ...] (1位整数) ↓压缩比: 32:1
关键操作:value > 0 → 1, else → 0
适用场景
✅ 推荐使用:
- 文档量 > 100 万
- 实时响应要求(<100ms)
- 成本敏感项目,而且对向量搜索作为一路大量粗召回的情形
❌ 不推荐:
- 对召回率要求极高(可能损失 5-10% 精度)
- 文档量 < 1 万(优化收益不明显)
💡 快速上手
# 3 行代码启用 Binary Quantizationbinary_embeds = np.where(embeddings > 0, 1, 0).astype(np.uint8)packed = np.packbits(binary_embeds, axis=1)store_to_milvus(packed) # 存储压缩后的向量
实战案例: 某电商客服系统接入后,服务器成本从 30 台降至 2 台,响应速度提升 40 倍。
三、Corrective RAG:会自我修正的智能检索
一句话总结
不仅检索,还会自动判断质量、联网补充、拦截错误答案。
传统 RAG 的致命问题
用户:"2025 年的 AI 监管政策是什么?"传统 RAG:检索到 2023 年旧政策 → 直接返回(❌ 过时信息)Corrective RAG:├─ 检索到旧政策├─ 相关性检测:标记为"过时"├─ 自动触发联网搜索└─ 合并新旧信息 → 返回准确答案 ✅
三层质量保障
- Router 层: 正确的工具选择
- Synthesis 层: 多源数据融合
- Cleanlab 层: 可信度最终验证(6 个维度护栏)
适用场景
- 金融客服(政策时效性强)
- 医疗咨询(信息准确性要求高)
- 法律助手(需要引用来源)
💡 核心价值
**答案准确性提升 30-40%**,但响应时间增加 200-500ms。适合对准确性要求远高于速度的场景。
关键决策: 如果你的 AI 系统出错成本很高(如医疗、金融),Corrective RAG 是必选项。
四、TrustRAG:结构化数据 + 非结构化知识的终极融合
TrustRAG架构
一句话总结
一次查询,同时搜索数据库(SQL)和文档库(RAG),还有 AI 守门员把关质量。
真实场景
用户:"ACME 公司有哪些负面评价?"传统方案需要:├─ 查数据库(投诉记录)└─ 查文档库(评论、新闻)→ 两次查询,手动合并TrustRAG:├─ 智能路由:同时调用 SQL + RAG├─ 自动合并结果├─ Cleanlab 验证:检测到"品牌安全风险"└─ 拦截原始回答,转人工客服 ✅
核心优势
特性 | 纯 SQL | 纯 RAG | TrustRAG |
---|---|---|---|
数据覆盖 | 仅表结构 | 仅文档 | 全覆盖 |
查询精度 | 精确匹配 | 语义相似 | 两者结合 |
风险控制 | 无 | 无 | 六维护栏 |
💡 企业级必备
适合需要同时处理结构化和非结构化数据的场景:
- 电商:订单查询 + 产品知识问答
- 医疗:病历检索 + 医学知识库
- 金融:账户查询 + 政策解读
投资建议: 如果你的系统涉及合规、品牌安全,TrustRAG 的可信度验证能避免 90% 的公关危机。
五、Deep Researcher:三个 AI 专家的协作研究
Deep Researcher架构
一句话总结
搜索专家 + 分析专家 + 写作专家,人工把关质量,输出带引用的专业报告。
为什么需要多智能体?
单个 AI 的困境:
- 搜索能力强 → 分析能力弱
- 分析能力强 → 写作能力差
- 什么都会 → 什么都不精
Deep Researcher 解法: 专业分工 + 人在回路
工作流程
用户查询:"2025 年生成式 AI 医疗应用趋势" ↓Web Search Agent:搜索 20+ 来源 → 生成 15 页笔记 ↓人工审核:标记缺失领域(如监管政策)→ 批准通过 ✅ ↓Analyst Agent:数据分析、趋势识别 → 8 页分析报告 ↓Writer Agent:结构化框架、专业文案 → 20 页最终报告 + 50 条引用
核心价值
特性 | 单一 Agent | Deep Researcher |
---|---|---|
报告深度 | 摘要式 | 分析式 |
引用准确性 | 低 | 高(可追溯) |
质量控制 | 自动化 | 人工关键节点 |
💡 适用场景
- 学术研究:文献综述
- 市场调研:行业分析
- 尽职调查:企业背景调查
时间成本: 2-5 分钟生成一份专业报告,相当于人工研究员 2-3 天的工作量。
六、GRPO:DeepSeek 的推理模型训练配方
GRPO训练流程
一句话总结
不需要复杂的价值函数网络,通过"比较"而非"打分"训练推理能力。
GRPO vs PPO(一张图看懂)
维度 | PPO(传统) | GRPO(创新) |
---|---|---|
训练方式 | 绝对奖励打分 | 组内相对排序 |
网络需求 | Value Network | 无需额外网络 |
训练稳定性 | 一般 | 更稳定 |
本质不同
奖励计算方式:
- PPO: 使用 value network 估计 baseline →
advantage = reward - V(s)
- GRPO: 使用同组样本的平均奖励作为 baseline →
advantage = reward - mean(group_rewards)
实例对比
假设训练 LLM 生成代码,同一prompt生成4个答案:
PPO 做法:
Prompt: "写冒泡排序"答案1得分: 8分 → advantage = 8 - V(状态) = 8 - 7 = +1答案2得分: 6分 → advantage = 6 - 7 = -1答案3得分: 9分 → advantage = 9 - 7 = +2答案4得分: 5分 → advantage = 5 - 7 = -2
需要训练独立的 V(状态) 网络
GRPO 做法:
组平均 = (8+6+9+5)/4 = 7答案1: advantage = 8 - 7 = +1答案2: advantage = 6 - 7 = -1 答案3: advantage = 9 - 7 = +2答案4: advantage = 5 - 7 = -2
直接用组内平均,无需额外网络
优势对比:
- GRPO: 更简单、内存占用少、适合大模型
- PPO: 理论更通用、适合传统RL任务
💡 应用启示
适合场景: 需要多步推理的任务
- 数学题求解
- 代码调试
- 逻辑推理
技术门槛: 相比 PPO 降低 40%,小团队也能训练推理模型。
七、SFT vs RFT:选对微调方法,事半功倍
SFT vs RFT决策流程
一句话总结
有数据用 SFT,没数据但能验证用 RFT,都没有用 RLHF。
决策树(60 秒快速选择)
你有标注数据吗?├─ No → 任务可自动验证吗?│ ├─ Yes(如代码)→ RFT ✅│ └─ No(如创意写作)→ RLHF 💰│└─ Yes → 数据量多少? ├─ > 100K → SFT ✅(最简单) └─ < 100 → 推理有帮助吗? ├─ Yes → RFT ✅ └─ No → SFT ✅
三种方法速查表
💡 实战建议
案例 1:客服机器人
- 10 万对话数据 → SFT(最高效)
案例 2:代码助手
- 无标注数据,但可运行测试 → RFT(自动验证)
案例 3:创意写作
- 无数据,主观评价 → RLHF(需要人类反馈)
避坑指南: 不要盲目追求 RLHF,80% 的任务 SFT/RFT 足够且成本低 10 倍。而且现在LORA微调也出了各种版本,回头我们梳理一个,底座很强,lora即可。
任何技术不存在牛不牛,关键在成本和场景中找到匹配
技术 | 解决什么问题 | 适用场景 | 成本 |
---|---|---|---|
MCP | 工具扩展混乱 | 复杂 Agent | 💰 低 |
Binary Quant | RAG 太慢太贵 | 大规模检索 | 💰 低 |
Corrective RAG | 答案不准确 | 高精度要求 | 💰💰 中 |
TrustRAG | 数据孤岛 | 结构化+非结构化 | 💰💰 中 |
Deep Researcher | 研究效率低 | 深度分析报告 | 💰💰 中 |
GRPO | 推理能力弱 | 复杂推理任务 | 💰💰💰 高 |
SFT/RFT | 微调方法选择 | 模型优化 | 💰-💰💰💰 |
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发