智能体可以想象成一个“有智慧的个体”。它不仅能接收外界的信息,还能理解并作出回应。一个由大模型驱动的智能体,通常由几个关键部分组成:感知模块、规划模块、记忆模块和工具使用模块。
当外界传来输入时,比如文字、语音、图片等,感知模块会先把这些不同形式的信息转换成机器能理解的表达方式。接着,规划模块会对这些信息进行分析和处理,并结合记忆模块中保存的经验和知识,完成推理和规划等更复杂的任务。如果需要,智能体还会通过工具使用模块来执行具体的动作,比如调用计算工具、生成代码,甚至控制其他设备。最终,它会给出合适的回应。
简单来说,这四个模块就像智能体的大脑和双手:感知负责“看听”,规划和记忆负责“思考”,而工具使用则是它的“行动力”。这样,智能体才能真正做到从理解世界到与世界互动。
1 感知模块
可以把感知模块理解为智能体的“感官系统”,它让智能体能够像人类一样接收和理解来自外界的多种信息。这个模块的核心任务,就是把文本、声音、图像等不同形式的数据转化为大模型能理解的内容,并传递给后续的思考和决策环节。
文本感知
文本是人类交流和知识传递的主要方式,因此也是智能体最基本、最重要的输入形式。今天的智能体(例如 AutoGPT)已经能通过文本与人互动,但真正的挑战在于:如何理解文字背后隐藏的含义,比如用户的潜在意图。研究人员尝试用强化学习等方法,让智能体学会捕捉这些隐含信息,从而生成更符合个人需求、更精准的回应。随着任务越来越复杂,尤其是在陌生环境中,提升文本理解能力显得尤为关键。
视觉感知
人类通过视觉获取大量环境信息,而这对智能体同样重要。图像不仅包含物体属性,还能体现空间关系和场景布局。为了让智能体“看懂”这些信息,一种思路是先把图像转成文字描述再交给大模型处理,这种方式简单、节省算力,但可能丢失很多细节。更先进的方法是把视觉编码器与大模型结合,通过接口层实现视觉与语言的对齐,让模型能直接理解视觉特征,从而提升其环境感知的全面性和准确性。
听觉感知
声音也是环境感知不可或缺的一环。具备听觉能力的智能体不仅能理解语音对话,还能识别环境噪音或潜在危险。当前常见的做法是让大模型调用现有的音频处理工具来完成听觉任务,这种方式方便,但依赖外部工具,信息容易丢失。研究人员正在探索把听觉能力更深度地融入大模型中,从而实现更自然、更稳健的听觉感知。
其他潜在感知
除了文字、视觉和声音,未来的智能体可能还会拥有触觉、嗅觉等更丰富的感官。例如,触觉能让智能体在与物体互动时获取更多细节,而嗅觉和对温度、湿度、光照的感知,则能帮助它更好地理解和适应环境。
总结来说:感知模块就像智能体的“眼耳口鼻”,它的多模态扩展决定了智能体对世界理解的广度和深度。未来,随着研究的深入,智能体将拥有越来越完善的感官系统,这不仅能让它更聪明地做决策,也会让它在复杂任务中表现得更加出色。
2 规划模块
如果把智能体比作一个“大脑”,那么规划模块就是它的“思维核心”。它的职责就是:理解环境和任务,想清楚要怎么做,再一步步制定行动方案,帮助智能体实现目标。
研究发现,大模型的规划和推理能力会随着规模变大而“飞跃式”增强。尤其是当模型参数量达到上百亿级时,即使没有直接相关的训练数据,它也能通过“逐步推理”的方式,把复杂任务拆解成合理的步骤,并逐步完成。这就像人类解决难题时,会先写下中间步骤,慢慢推导出答案一样。
两种主要规划方式
- 无反馈规划
顾名思义,这种方式就是“一次性想好所有步骤”,然后严格按照既定计划执行,不会因为外界变化而调整。它的优点是效率高,适合那些环境稳定、不太会变化的任务。
举个例子:写一篇文章。如果主题和结构都已经确定,智能体可以在一开始就生成完整的写作大纲,然后按照计划写完所有段落。
不过问题也很明显:现实往往难以预料。如果外部环境发生变化,而计划没有考虑到这些情况,智能体就可能执行失败。 - 带反馈规划
这是一种更聪明、更灵活的方式。智能体不仅会在任务开始前制定初步计划,还会在执行过程中不断“观察环境”,根据反馈实时调整方案。
经典的方法是 ReAct:在执行每一步任务时,智能体会结合之前的结果和环境反馈,动态决定下一步该怎么做。这就像人类在走迷宫时,不是提前写好所有路线,而是边走边看,不断根据路况来修正方向。
这种方式最大的优势是适应性强,非常适合动态、复杂的环境。
混合使用
在实际应用中,智能体往往会把两种方式结合起来。比如自动配送机器人,可以先用无反馈规划生成一条大致的配送路线,然后在路上再结合带反馈规划,根据交通状况或突发事件进行实时调整。这样既能保证效率,又能保持灵活性。
总结来说:
- 无反馈规划 = 提前计划好,一次性执行 → 高效但死板。
- 带反馈规划 = 边走边调整 → 灵活但需要更多计算。
- 结合两者 = 又快又稳 → 更适合复杂的现实环境。
这样,规划模块就赋予了大模型智能体像人一样的“思考与决策能力”,让它们能在多变的世界中完成复杂的任务。
3 记忆模块
我们可以把记忆模块看作是智能体的“大脑记忆系统”,它让智能体不仅能记住刚刚发生的事情,还能积累长期的经验。正因为有了记忆模块,智能体才能在处理连续任务时保持连贯性,并根据过往经验做出更聪明的决定。
1)记忆模型:短期记忆和长期记忆
- 短期记忆
相当于人类的“工作记忆”,用来记住眼前正在发生的事。大模型通常会把这些记忆以提示的形式放在输入上下文里。
- 存储:执行任务时,把关键的信息和步骤临时记录下来。
- 使用:后续任务需要时,把这些记录作为提示交给模型,让它在已有上下文的基础上继续推理。
👉 举个例子:一个写作助手会记住你在前几段中提到的主题,然后在生成新段落时保持风格一致。
- 长期记忆
相当于人类的“知识库”,能保存经验和知识,方便以后调用。
- 构建:智能体会把积累下来的知识存入数据库或知识图谱中。
- 检索:遇到新问题时,它会查找是否有类似的经验,把相关内容取出来作为参考。
👉 举个例子:一个客服智能体可以回忆起过去解决过的类似问题,从而快速给出解决方案。
2)记忆操作:写入、读取、反思
- 写入
就是把新的信息存进记忆里。短期记忆通常直接放进上下文,长期记忆则会整理后放入记忆库,并加上索引,方便以后查找。 - 读取
就是把需要的信息提取出来。短期记忆直接从上下文里拿,长期记忆则要通过搜索数据库来找到相关内容。 - 反思
这是记忆模块最有趣的部分。智能体不仅能回顾过去,还能总结经验、发现不足,并提出改进建议。比如 Reflexion 方法,让智能体在完成任务后复盘:哪些策略有效?哪些要调整?然后把这些“教训”存下来,用于指导未来的任务。
✨ 简单总结:
记忆模块就像智能体的大脑:
- 短期记忆 = 临时便签 → 记住正在做的事。
- 长期记忆 = 知识档案馆 → 积累经验和知识。
- 反思 = 总结复盘 → 从经验中学习,变得越来越聪明。
正因为有了记忆模块,智能体才能做到“举一反三”,在复杂任务中表现得像一个真正有经验的人。
4 工具使用模块
可以把 工具使用模块 理解为智能体的“手和外脑”。如果说感知模块是它的“眼耳口鼻”,记忆模块是“大脑记忆”,规划模块是“思维与决策”,那么工具使用模块就是让智能体真正能够 动手操作、接触外部世界 的关键环节。
有了工具使用能力,智能体就不再局限于“只会说”,而是能去 计算、查询信息、调用API、甚至控制机器人或软件。这让它的能力边界大大拓展,能在更多真实场景中发挥作用。
智能体是怎么学会用工具的?
和人类一样,智能体学习用工具也有几种主要方式:
1)示范学习:看别人怎么做
这就像小孩通过模仿大人来学会使用剪刀、筷子一样。
- 怎么学:先给模型大量“示范数据”,比如某个工具的操作案例、流程步骤,甚至视频。
- 怎么用:通过训练,模型就能模仿这些操作,在遇到类似任务时照葫芦画瓢完成。
- 优点:学得快,适合操作步骤固定的工具。
- 缺点:太依赖示范数据,遇到新情况就容易卡壳。
2)教程学习:读说明书
这就像我们买了一个新电器,会翻开说明书一步步学习使用方法。
- 怎么学:把工具的手册或操作指南输入到模型的上下文里,让它“读说明书学技能”。
- 挑战:强大的大模型(比如 GPT 系列)能做到,但开源模型理解能力有限,读了说明书也不一定能学会。
- 解决方案:研究者做了像 ToolLLM 这样的系统,给模型配上包含成千上万工具 API 的“任务说明书”,并用算法帮它找到最佳操作路径,从而显著提升开源模型的工具使用能力。
- 优点:学得系统全面。
- 缺点:对模型的理解能力要求高。
3)探索学习:边试边学
这就像人类第一次玩新手机,可能会乱点按钮,但通过尝试和错误慢慢熟悉操作。
- 怎么学:模型自己动手试,执行操作并根据反馈来改进。
- 结果反馈:任务整体完成得好不好。
- 过程反馈:每一步动作的即时表现。
- 例子:在 WebShop 场景中,智能体会尝试在线购物行为,然后通过对比人类的购物方式获得反馈,并不断改进策略。
- 优点:灵活、自主,能应对复杂环境。
- 缺点:需要大量尝试和反馈,学习成本高。
4)多策略结合:更聪明的工具高手
单一的学习方式都有局限,但如果把它们结合起来,效果就会更强:
- 示范学习 + 教程学习 → 既能模仿,又能理解复杂工具操作。
- 示范学习 + 探索学习 → 先快速学会基本操作,再通过探索不断优化,提升适应性。
未来的智能体,就可能像人类一样:既能通过看别人操作快速上手,也能靠看说明书掌握细节,还能通过实践不断积累经验,最终成为一个真正灵活高效的“工具高手”。
✨ 简单总结:
- 工具使用模块 = 智能体的“手”与“外脑”。
- 示范学习 = 看别人做,模仿。
- 教程学习 = 读说明书,理解。
- 探索学习 = 边试边学,总结经验。
- 结合三者 = 又快又灵活,适应复杂任务。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发