前言
摘要
基于图的检索增强生成(RAG)已被证明在将外部知识整合到大型语言模型(LLMs)中非常有效,提高了它们的事实准确性、适应性、可解释性和可信度。文献中提出了一些基于图的RAG方法。然而,这些方法尚未在同一实验设置下得到系统和全面的比较。本文首先从高层次的角度总结了一个统一的框架,以整合所有基于图的RAG方法。然后,我们广泛比较了一系列问答(QA)数据集上有代表性的基于图的RAG方法——从具体问题到抽象问题——并检验了所有方法的有效性,提供了对基于图的RAG方法的彻底分析。作为我们实验分析的副产品,我们还能够通过结合现有技术,分别识别出针对特定QA和抽象QA任务的新颖基于图的RAG方法变体,这些变体超越了最先进的方法。最后,基于这些发现,我们提供了有前景的研究机会。我们相信,对现有方法行为的更深入了解可以为未来的研究提供新的宝贵见解。
图1:普通RAG和基于图的RAG概览。知识、实时更新的信息和专有知识,这些内容超出了大型语言模型预训练语料库的范围,被称为“启发式”[64]。
为了填补这一差距,提出了检索增强生成(RAG)技术,该技术通过向大型语言模型补充外部知识来提升其事实准确性和可信度。因此,RAG技术已被广泛应用于各个领域,尤其是在需要大型语言模型生成可靠输出的领域,如医疗保健、金融和教育。此外,RAG在许多数据管理任务中被证明非常有用,包括自然语言查询到SQL的转换(NL2SQL)、数据清洗、旋钮调节、数据库管理系统诊断以及SQL重写。由于RAG技术在基于大型语言模型的应用中的重要角色,过去一年提出了许多RAG方法。在这些方法中,最先进的RAG方法通常使用图数据作为外部数据(也称为基于图的RAG),因为它们能够捕捉丰富的语义信息和实体间的链接关系。给定用户查询Q,基于图的RAG方法的核心思想是从图中检索相关信息(例如,节点、边、子图或文本数据),然后将其与Q一起作为提示输入到大型语言模型中以生成答案。图1展示了基于朴素的RAG(即,普通RAG)和基于图的RAG的概览。
论文详情:https://arxiv.org/abs/2503.04338
代码开源地址:https://github.com/JayLZhou/GraphRAG
核心内容
研究背景
1.研究问题:这篇文章要解决的问题是如何在统一框架下对基于图的检索增强生成(RAG)方法进行系统的比较和分析。具体来说,现有的基于图的RAG方法没有在同一实验设置下进行系统的比较。
2.研究难点:该问题的研究难点包括:缺乏统一的框架来抽象和比较各种基于图的RAG方法;现有工作主要关注整体性能评估,而非单个组件的性能;缺乏对各种方法在准确性和效率方面的全面比较。
3.相关工作:该问题的研究相关工作有:RAG技术在各种领域的广泛应用,如医疗保健、金融和教育;已有的基于图的RAG方法,如RAPTOR、KGP、HippoRAG等,但这些方法缺乏系统的比较和分析。
研究方法
这篇论文提出了一个统一的框架,用于解决基于图的RAG方法的系统比较和分析问题。具体来说,
1.图构建:首先,将大规模语料库分割成多个块,然后使用LLM或其他工具从这些块中提取节点和边,构建图。图的类型包括passage graph、tree、knowledge graph、textual knowledge graph和rich knowledge graph。
2.索引构建:为了支持高效的在线查询,构建索引以存储图中的实体或关系,并计算社区报告以实现高效的在线检索。索引类型包括节点索引、关系索引和社区索引。
3.操作符配置:在统一框架下,任何现有的基于图的RAG方法都可以通过选择特定的操作符并将其组合来实现。操作符分为节点类型、关系类型、块类型、子图类型和社区类型。
4.检索与生成:在检索与生成阶段,首先将用户输入的问题转换为检索原语,然后使用选定的操作符检索相关信息,并将其与问题一起输入LLM以生成答案。答案生成有两种范式:直接生成和Map-Reduce。
实验设计
1.数据集:实验使用了11个真实世界的数据集,包括特定问题和抽象问题的数据集。数据集如MultihopQA、Quality、PopQA、MusiqueQA、HotpotQA、ALCE、Mix、MultihopSum、Agriculture、CS和Legal。
2.评估指标:对于特定问题任务,使用准确率和召回率进行评估;对于抽象问题任务,使用包括全面性、多样性、赋能和总体质量在内的多维度比较方法进行评估。
3.实现:所有算法在Python中实现,并使用提出的统一框架。实验在350集。数据集如MultihopQA、Quality、PopQA、MusiqueQA、HotpotQA、ALCE、Mix、MultihopSum、Agriculture、CS和Legal。
4.超参数设置:对于需要top-k选择的每种方法(例如块或实体),设置k=4以适应令牌长度限制。使用最先进的文本编码模型BGE-M3生成图的节点和关系的嵌入向量。
结果与分析
1.特定问题任务的性能:RAG技术显著提高了LLM在所有数据集上的性能,基于图的RAG方法通常比Vanila RAG具有更高的准确性。例如,在Quality数据集上,RAPTOR相比ZeroShot提高了53.80%的准确性。然而,如果检索到的元素与给定问题不相关,RAG可能会降低LLM的准确性。
2.图构建和索引构建的成本:构建树所需的令牌成本最低,而TKG和RKG的令牌成本最高。对于大型数据集,离线阶段的两种版本的GraphRAG通常比其他方法消耗更多的令牌。
3.生成成本:ZeroShot和VanilaRAG在时间和令牌消耗方面是最具成本效益的方法。KGP和ToG是最昂贵的方法,因为它们依赖于LLM进行信息检索。
4.复杂问题任务的新SOTA算法:基于上述分析,设计了新的SOTA方法VGraphRAG,通过结合四种元素(实体、关系、社区和块)来有效地指导LLM生成准确的答案。在ALCE数据集上,VGraphRAG在STRREC、STREM和STRHIT方面分别提高了8.47%、13.18%和4.93%。
5.抽象问题任务的性能:基于图的RAG方法通常优于VanillaRAG,主要原因是它们有效地捕捉了块之间的相互连接。GGraphRAG和RAPTOR通常优于HLightRAG和FastGraphRAG,因为它们将高层次的总结文本纳入提示中。
6.新SOTA算法的成本效益:设计了一个成本效益更高的版本CheapRAG,通过选择最有用的社区和块来显著减少令牌成本。在MultihopSum数据集上CheapRAG相比GGraphRAG减少了100倍的令牌成本,同时提高了答案质量。
总体结论
这篇论文提供了对现有基于图的RAG方法的深入实验评估和比较。首先,提出了一个新的统一框架,可以涵盖所有现有的基于图的RAG方法。然后,在统一框架下对各种基于图的RAG方法进行了深入分析和比较。此外,通过多种数据集从不同角度系统地评估了这些方法,并通过结合现有技术开发了变体,这些变体通常优于最先进的方法。从广泛的实验结果和分析中,识别了几个重要的发现并分析了影响性能的关键组件。最后,总结了所学到的教训并提出了促进未来研究的实际研究机会。
核心创新
1.统一框架:提出了一个新颖的统一框架,涵盖所有现有的基于图的检索增强生成(RAG)方法,从高层次角度抽象出几个关键操作。
2.全面比较:在统一框架下系统地比较了12种代表性的基于图的RAG方法,提供了对这些方法的深入分析。
3.新变体识别:通过结合现有技术,识别出新的基于图的RAG方法变体,这些变体在某些任务上优于最先进的方法。
4.实验设计:在多个广泛使用的问答(QA)数据集上进行了全面的实验,评估了这些方法处理不同类型查询的能力,并进行了深入分析。
5.模块化设计:框架的模块化设计允许不同算法在各个阶段无缝集成,确保每个阶段(如图构建、检索和生成)可以独立优化和重组。
6.操作符设计:通过调整检索阶段或交换组件,研究人员可以快速测试和实施新策略,显著加速检索增强模型的开发周期。
7.标准化评估:提供了一个标准化的方法来评估基于图的RAG方法,确保了可重复性,促进了公平的基准测试,并为未来的RAG基础LLM应用的创新提供了便利。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
